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ABSTRACT

Air pollution is a serious threat to public health worldwide, causing millions of premature deaths each year. In
Latin America, and especially in Ecuador, the situation becomes even more complicated due to poor monitoring
infrastructure, making it difficult to effectively track pollutants such as PMa.s, CO2 and CO. This research presents
an innovative approach that is based on the calibration and validation of low-cost sensors (ME) to measure pollut-
ants in outdoor spaces, using multivariate mathematical models (A, B, C and D) that include temperature and rela-
tive humidity as additional variables. Platforms with ME1 and ME2 sensors were used to collect the PM..s, CO2
and CO data for more than two weeks, comparing these data with reference instruments. The calibration models
were evaluated using metrics such as MAE, R?, MAPE and SMAPE. The results indicated that, once calibrated,
the ME1 and ME2 sensors achieved correlations above 92% with the reference instruments for all pollutants, with
absolute and relative errors within acceptable ranges. The inclusion of environmental variables consistently im-
proved the fit of the models, especially model D. Among the four approaches evaluated (A-D), Model D was the
most efficient for PMo. s, reaching R? = 0.963 and MAE = 3.24 ng/m?® in ME1 (8.5% improvement vs. Model A),
and R? = 0.957 and MAE = 3.92 pg/m?® in ME2 (8.2% improvement). For CO., the differences between models
were small (MEL: max. R?2 = 0.839 in D; ME2: max. R? = 0.763 in D), with MAE variations < 1%. For CO, the
best performance was marginal and depended on the metric: in ME1, the lowest MAE was obtained by Model B
(54.83 ppb), while in ME2, Model D (57.48 ppb) reduced the error by ~1.2% compared to A, with R2= 0.929. This
study demonstrated that, with proper calibration, low-cost sensors can be effective tools for air quality monitoring
in resource-limited contexts such as Ecuador, strengthening environmental surveillance strategies and facilitating
evidence-based decision making.
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INTRODUCTION transportation and deficiencies in environmental
monitoring. [1-3]. In middle- and low-income

Air quality is one of the most challenging  countries, such as Ecuador, the problem is ex-
global public health issues. According to the

World Health Organization (WHO), air pollution
is responsible for approximately seven million
premature deaths per year, with fine particulate
matter (PM2.5) and gases such as carbon dioxide
(COz2) and carbon monoxide (CO) being the main
culprits (WHO, 2021). In Latin America, despite ~ quil, have exceeded 25 pg/m® on a daily average,
being less industrialized compared to other re- a value that exceeds both the limits recommended
gions, there has been an increase in emissions by the WHO (15 pg/m? per year) and the maxi-
in recent years due to urban growth, unregulated =~ mum permissible limits established in the country

acerbated by limited infrastructure for continu-
ous environmental monitoring. According to the
data from the Ministry of Environment, Water
and Ecological Transition (MAATE), the PM2.5
levels in urban areas, such as Quito and Guaya-
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(50 pg/m? for PM2.5 in 24 hours according to
MAATE Technical Standard No. 097-A). [4-7]

This research presents a proposal for the use,
calibration and validation of low-cost sensors
(LCS) for the measurement of air pollutants, us-
ing multivariable mathematical models that in-
clude corrections for temperature and relative hu-
midity [8—11]. Unlike previous studies that only
evaluated the linear correlation between sensors
and reference equipment, this work incorporated
four types of models (A, B, C and D) that al-
low evaluating the behavior of the sensors under
changing environmental conditions and compar-
ing them with quantitative criteria such as MAE,
R?, MAPE and SMAPE. [8, 12]

The importance of this research lies in its ap-
plicability for research work with limited resourc-
es, such as the Ecuadorian case, where air qual-
ity monitoring networks are scarce and costly to
maintain. By demonstrating that inexpensive sen-
sors can be adequately calibrated to fulfill indica-
tive monitoring functions, an opportunity opens
up to expand the coverage of environmental sur-
veillance, contribute to compliance with national
regulations and promote evidence-based public
policies [10, 11]

Recent studies have delved into field calibra-
tion and statistical validation of low-cost sensors.
For example, [13] showed how statistical correc-
tion in municipal networks reduces systematic
biases at the neighborhood level; [14] evaluated
calibration methods and reported modest but con-
sistent improvements when environmental vari-
ables are incorporated; whereas [9] developed
a multi-pollutant system and documented the
usefulness of real-time multivariate approaches.
The conducted work aligns with these findings by
incorporating temperature and relative humidity
into calibration models and advances by compar-
ing four A-D formulations in parallel (with MAE,
R?, MAPE, and SMAPE metrics) and reporting
the incremental benefit of environmental vari-
ables, especially for PMa.s.

Methodology

This study focused on evaluating the perfor-
mance of low-cost sensors (ME) for real-time
monitoring of air pollutants, namely PM2.5, car-
bon dioxide (CO:) and carbon monoxide (CO). A
quantitative experimental design was used with
a comparative approach between low-cost sensor
readings and reference instruments. [15, 16]

The sensors selected were Sensor 0177 for
PM2.5 and Sensor 0132 for CO and CO., [17—
20]. They were chosen for their high availability,
low cost and documented suitability for air qual-
ity monitoring applications. The sensors were
integrated into platforms named ME1 and ME2
configured to record data at one-minute intervals.
[13, 14, 21-23]. The 0177 sensor is an air qual-
ity sensor that uses a laser to measure the con-
centration of PM2.5 particles (fine particles with
a diameter of 2.5 micrometers or less) in the air
[24, 25]. This sensor provides accurate and real-
time data on the amount of airborne particles in
a range of 0.3 to 10 micrometers, the measurable
particle diameter is 0.3~1.0, 1.0~2.5, and 2.5~10
micrometers. The 0132 sensor is designed to de-
tect the concentration of CO and CO: in air, mea-
suring concentrations between 20 to 2000 ppm,
it offers an analog output interface, its sensitivity
can be adjusted with an integrated potentiometer,
as shown in Figure 1.

Study and site design

The study evaluated the calibration of low-
cost sensors for PMa.s, CO2, and CO installed on
two platforms (ME1 and ME2), compared against
co-located reference stations. The campaign was
conducted over 15 days in the city of Milagro,
Ecuador, with variable weather conditions of
temperature (T) and relative humidity (RH) rep-
resentative of the period. Sensors ME1 and ME2
(Figure 2) were deployed together with reference
instruments for at least 15 days in the center of
the city of Milagro. Temperature (°C) and rela-
tive humidity (%) were also recorded simultane-
ously. The data were recorded in CSV format and
processed in R (version 4.3.1) using the packages
tidyverse, lubridate and ggplot2. Each platform
recorded data every minute for 15 consecutive
days, generating 21,600 records per variable and
per platform. After cleaning (removal of nega-
tives/duplicates, alignment by timestamp, and
linear interpolation of short gaps), approximately
10.000 data points remained for ME1 and ME2
observations per pollutant. The analysis was per-
formed on these synchronized and refined series.

Equipment and variables

e Sensors: MEI and ME2 platforms with chan-
nels for PMa.s, CO2, and CO (gross ME output
per channel).
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Figure 1. Composition of sensors

Figure 2. Placement of sensors

e References: certified monitors for PMa.s
(pg'm?), CO2 (mg-m2), and CO (ppb).

e Environmental covariates: air temperature (T, °C)
and relative humidity (RH, %) measured locally.

Data acquisition and preprocessing

e Sampling frequency: 1 min
e Synchronization: sensor and reference series
were aligned by timestamp and interpolated or
averaged to the common resolution of 5 min
when necessary.
e (leaning and quality control:
— Elimination of duplicates and records with
invalid dates.
— Exclusion of physically impossible values
such as negative values and values outside
the range of the equipment [24-26].
e Sample size: number of observations per pol-
lutant and platform after cleaning was approx-
imately 10.000 data points for each pollutant

Negative or erroneous readings were filtered
out and time stamps were aligned by linear inter-
polation to ensure comparability between time se-
ries. Duplicate and missing entries were removed,
and outliers were detected using Tukey’s method
and Z-score analysis.

Calibration models

Four mathematical calibration models (A-D)
were developed for each sensor based on previ-
ous research:

e Model A: Simple calibration using only the
raw output of the ME1 or ME2 sensor.

e Model B: Multivariate calibration including
temperature (T).

e Model C: Multivariate calibration including
relative humidity (RH).

e Model D: Combined multivariate calibration
using ME, T and RH.

The general forms of the models were:
Model A: y = Bo + f1.ME

Model B: y = Bo + Bi-ME + B.. T

Model C: y = Po + B:1-ME + B2.RH
Model D: y = Bo + f1.ME + B2.T + B3.RH.

donde “y” es la concentracion de la referencia,
ME la lectura del sensor.

Performance metrics calculated for each
model included mean absolute error (MAE), co-
efficient of determination (R?), mean absolute
percentage error (MAPE) and symmetric MAPE
(SMAPE). They were calculated separately for
MEI1 and ME2 and compared between models.
Statistical analysis and visualization were per-
formed in R. Scatter plots and time series were
created with ggplot2; correlations were evaluated
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with ggcorrplot, and regression fits were visual-
ized with geom_smooth(method = “Im”). Five-
fold cross-validation was applied to ensure ro-
bustness of model comparisons. [27-30]. To for-
mally compare the performance of the four mod-
els (A-D), k=5 cross-validation was applied by
time blocks. In each fold, the model was trained
on the four time quintiles and evaluated on the
remaining quintile.

A repeated measures ANOVA was performed
on the metrics per fold (MAE and R?) with fold
as a block (Error(fold)) and Model (A-D) as a
fixed factor. Additionally, a linear mixed model
with random intercept per fold was fitted for more
robust contrasts, and Tukey post hoc comparisons
(multiplicity adjustment) were performed be-
tween pairs of models. As a sensitivity analysis,
paired Student’s t-tests were calculated between
pairs of models per fold. For visualization, the
scatter plots include the 95% confidence band of

the linear fit, and for model D, a 95% prediction
interval is reported at the median temperature and
humidity of the evaluated set.

ANALYSIS OF RESULTS

Analysis of PM,.5

The relative humidity graph (Figure 3), shows
the behavior over time of PMaz.s captured by the
low-cost sensors (ME1 and ME2) compared to
the reference instrument, along with the evolu-
tion of relative humidity (RH). It is observed that
both sensors manage to adequately replicate the
PMo:.s concentration trends, although they pres-
ent slight variations in the high concentration
peaks. RH evidences a daily variability, without
a very marked direct relationship with PMoa.s lev-
els. The temperature graph (Figure 4) presents the

1 Hour Mean PM2.5 and Relative Humidity

60

i — ME1_PM25
20 40 — ME2_PM25
4 — Reference_PM2.5
=
Relative Humidi
& 10 20 "
0 0
& & & iy &
& o & &
Q Q Q7 QY Q-
é\'b é@/ Q}‘@ 23\2' é\‘Zf
Time
Figure 3. Relative humidity and PM2.5
1 Hour Mean PM2.5 and Air Temperature
80 30
T 49 20 Alr Temperature
2 — ME1_PM25
L — ME2_PM25
E 20 10 — Reference_PM2.5
0 0
& & @ & &
S o S &
S S Q¥ Q¥ Q-
é@r e\:\@ é@ é& é@
Time

Figure 4. Temperature and PM2.5
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comparison of PMa.s It was identified that both
ME1 and ME2 follow in a very similar way the
trend of the reference, particularly in the daily
rises and falls, while temperature remains more
stable, suggesting a lower direct influence of this
variable on PMz.s concentrations in this measure-
ment period.

The correlation matrix (Figure 5) demon-
strates the obtained findings, showing high cor-
relation coefficients between the ME1 and ME2
sensors with respect to the reference instrument
(0.98 and 0.94, respectively), which evidences
a strong linear relationship and a good ability
to reproduce the real PM..s values. The correla-
tion between RH and PM..s measurements is low

ME2
Corr
1.0
05
0.0
RH 0.13 0.12 0.15

. -0.5
1.0

Temp | 0.09 0.05 0.09 0.04

Figure 5. PM2.5 correlation
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(between 0.12 and 0.15), indicating that relative
humidity did not significantly affect the measure-
ment during the experiment. Likewise, tempera-
ture shows even lower correlations (between 0.04
and 0.09), confirming its low influence in the ana-
lyzed period.

Figure 6 presents the relationship between
the PM..s concentrations measured by the low-
cost sensors (ME1 and ME2) and the reference
measurements, both before and after the calibra-
tion process. In the first graph (“MEI vs Refer-
ence (Uncorrected)”), it can be seen that the ME1
sensor, without correction, shows a reasonably
strong linear trend with the reference, albeit with
some scatter in the data, particularly at concentra-
tions greater than 20 pg/m3.

After calibration (“ME1 vs Reference (Cor-
rected)”), the scatter decreases markedly and the
points align much more closely along the line
of identity (dashed line), indicating a significant
improvement in the accuracy of the sensor. This
result suggests that the fitting model applied to
ME1 was highly effective. Similarly, the ME2
sensor (“ME2 vs Reference (Uncorrected)”) also
exhibits a positive correlation before correction,
but with greater data variability relative to ME1,
especially at the upper extremes of concentra-
tion. After calibration (“ME2 vs Reference (Cor-
rected)”), the ME2 data improves in alignment,
although the fit is not as perfect as in the case of
MEI, indicating that the corrective model had a
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positive impact, but that there is still room for im-
provement for the ME2 sensor.

The results obtained from the calibration
models for the ME1 and ME2 sensors show a
considerable improvement in accuracy and preci-
sion after multivariate adjustment. In the case of
the ME1 sensor, the simplest model (Model A)
presents a coefficient of determination R? = 0.951
and a MAE of 3.54 pg/m? indicating a strong
but still perfectible relationship with respect to
the reference values. By introducing additional
variables, such as temperature (T) in Model B
and relative humidity (RH) in Model C, a pro-
gressive improvement in the metrics is observed.
Model D, which simultaneously integrates T and
RH, achieves the best performance with R?* =
0.963, MAE = 3.24 pg/m?, MAPE = 14.96% and
SMAPE = 13.75%, evidencing that multivariate
calibration is highly effective in improving the re-
sponse of the ME1 sensor.

For the ME2 sensor, a similar pattern is ob-
served, although with slightly lower values than
MEI1. The initial model (Model A) starts with R?
=0.944 and MAE = 4.27 ug/m?. The incorpora-
tion of T in Model B and RH in Model C improves
the metrics, highlighting Model D, which inte-
grates both variables and achieves an R? 0of 0.957,
a MAE of 3.92 pg/m?, a MAPE of 17.33% and a
SMAPE of 15.66%. Despite the improvements,
the relative errors (MAPE and SMAPE) are high-
er in ME2 than in ME1, suggesting that the ME2
sensor has greater inherent variability or sensitiv-
ity to unmodeled environmental conditions.

For both sensors, it is highlighted that the ad-
dition of temperature and humidity as indepen-
dent variables in the regression models consis-
tently improves the fit. This evidences the impor-
tance of considering environmental factors in the

Table 1. Calibration of low-cost PM2.5 sensors

calibration of low-cost sensors for PMz.s measure-
ments. Also, the SMAPE values obtained, which
remain around 14-16%, indicate an acceptable
relative error for environmental monitoring ap-
plications of an indicative type or in support of

official networks (Table 1, 2).
Figure 7 shows the temporal evolution of

CO: concentrations measured by sensors MEI
and ME2 compared to a reference instrument,
together with the evolution of the environmental
variables of relative humidity (RH) and tempera-
ture (Figure 8). It is observed that both sensors,
although following the general trends of the refer-
ence, present variations in magnitude throughout
the measurement period. The ME1 sensor tends to
slightly overestimate the CO- values with respect
to the reference, while the ME2 sensor shows a
more marked underestimation, as evidenced in
the humidity and temperature plots.

The impact of environmental conditions is re-
flected in the observed correlations. The correla-
tion matrix shows that MEI1 has a correlation of
0.92 with the reference value, while ME2 reaches
0.93, suggesting a high capacity of both sensors
to capture CO: variability, although with system-
atic differences in magnitude. However, the cor-
relation levels of the sensors with RH and tem-
perature are low (around 0.08 to 0.2), indicating
that, despite the influence of these variables, their
effect is not dominant in the range of variability
studied (Figure 9).

The trend of relative humidity shows smooth-
er variations than those of CO:, while tempera-
ture, although less variable, presents certain peaks
that coincide with fluctuations in CO: concentra-
tion, suggesting an indirect interaction. This en-
vironmental influence should be considered in
advanced calibrations to improve accuracy.

vode Fquaton VR T | WAPE | SwAPE

ME1

A y = 0.902 * ME1ppss + 0.999 354 | 0951 | 16.21 14.91

B y = 0.114 + 0.901ME 1,5 + 0.036T 327 | 0962 | 15.02 13.80

c y = 0.116 + 0.9ME1py, 5 + 0.017RH 349 | 0953 | 15.98 14.71

D y = —0.601 + 0.899ME 1y, 5 + 0.03T + 0.016RH 324 | 0963 | 14.96 13.75
ME2

A y = 0.922ME2py25 + 0.678 427 | 0944 | 1878 16.99

B y = 0.617 + 0.992ME2,y, 5 + 0.002T 396 | 0956 | 17.47 15.79

c y = 0.141 + 0.921ME2py; 5 + 0.01RH 423 | 0947 | 1855 16.76

D y = 0.16 + 0.921ME2py55 — 0.001T + 0.011RH 392 | 0957 | 17.33 15.66
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Table 2. PM2.5 calibration models (ME1/ME2): Cross-validated performance (MAE, R?) and Improvement vs.

baseline (A)

PM2.5

ME1: better D (MAE = 3.24 pg/m?; R? = 0.963); improvement vs. A = 8.47% in MAE

MEZ2: better D (MAE = 3.92 pg/m?®; R? = 0.957); improvement vs. A = 8.20% in MAE
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Figure 8. Temperature in CO, measurement

Figure 10 compares the carbon dioxide (CO2)
concentration measurements obtained by the
ME1 and ME2 sensors versus the reference in-
strument, both in their raw state (Raw) and after
adjustment (Adjusted). In the Raw data plots, it is
observed that the measurements of both sensors
present a larger scatter around the identity line
(dashed line), particularly ME2, indicating sig-
nificant biases and systematic errors before any
calibration process.

After applying the fit models, the Adjusted
plots show a marked improvement in the align-
ment of the data with respect to the reference. For

ME2

ME1

RH

Temp

Figure 9. CO, correlation
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ME1, calibration reduces the scatter and brings
the data significantly closer to the ideal line, re-
flecting a successful fit. For ME2, although the
calibration improves the trends, a slight scatter
remains, indicating that, although the model cor-
rects the overall trend, residual errors — that could
be optimized with more complex techniques or
with the inclusion of additional environmental
variables — still persist.

In terms of interpretation, the fit has system-
atically reduced the prediction errors for both
sensors, as can be deduced from the slope of the
regressions, which is closer to 1, and the inter-
sections closer to 0. In addition, the smaller sepa-
ration between the fitted regression line and the
identity line in the corrected plots suggests a high
ability of the sensors to reproduce CO: levels
once calibrated.

The calibration of the ME1 and ME2 sensors
against CO: reference measurements shows differ-
entiated performances according to the mathemati-
cal model used. For ME1, all models (A-D) present
alow mean absolute error (MAE), close to 26.3 mg/
m?, and a coefficient of determination (R?) higher
than 0.83, indicating a good fit of the predictions to
the reference values. The inclusion of environmen-
tal variables, such as temperature (T) and relative
humidity (RH) slightly improves the R?, reaching a
maximum value of 0.839 in Model D.

Regarding the relative errors, the MAPE
for ME1 remains around 2.97-2.98%, while
SMAPE, a robust indicator in the face of extreme
values, is consistently around 2.93-2.94%. These

ME1 vs Reference (Raw)
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o~
O 1100
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W 900
= . : ;
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MEZ2 vs Reference (Raw)

& 1000
~ 900
O

O 300
(o] :
W 7o

800 200
Reference CO2 (mg/m?®)

1000

low values suggest high prediction accuracy and
confirm that the calibrations performed are ef-
fective for environmental applications requiring
high accuracy.

In the case of the ME2 sensor, the errors are
slightly higher. The MAE oscillates around 31.5
mg/m?, and the R? is somewhat lower, in the range
0f'0.759-0.763. Although the models that include
temperature and humidity (Models B-D) achieve
small improvements in R?, the increase is not as
pronounced as in ME1, indicating that ME2 has
greater linearity or intrinsic stability limitations.
The MAPE and SMAPE for ME2 remain low
(3.58-3.61% and 3.52-3.55%, respectively), but
higher than those obtained for MEI, reflecting
slightly lower performance.

Overall, the results show that the ME1 sen-
sors offer a more robust and reliable response
compared to ME2. In addition, the incorporation
of auxiliary meteorological variables such as tem-
perature and humidity improves the performance
of both sensors, although more significantly in
MEI1. The choice of the calibration model should
consider not only the values of R%,, MAE and
MAPE, but also the operational stability of the
sensor under varying environmental conditions.
See Table 3, 4.

In the temporal behavior plots (Figures 11
and 12), it is observed that the scaled signals from
the ME1 and ME2 carbon monoxide (CO) sen-
sors reasonably replicate the trends of the refer-
ence, albeit with differences in magnitude. The
CO Reference ppb values exhibit pronounced
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Figure 10. Measurement of the CO, concentration
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Table 3. Calibration of the CO, sensors

Model Equation (r%?ri’) R? MAPE (%) S'\(/I(Q';E

ME1

A y = 0.65* ME1¢o, + 159.53 26.30 0.831 2,97 2.93

B y = 86.58 4+ 0.65ME 1y, + 2.98T 26.29 0.832 297 2.93

C y =117.90 + 0.65ME1;y, + 0.84RH 26.30 0.838 2,97 2.93

D y =74.98 4+ 0.65ME1.,, + 1.85T 4+ 0.79RH 26.37 0.839 2.98 2.94
ME2

A y = 0.88ME2., + 131.81 31.74 0.759 3.61 3.55

B y = 25.88 4+ 0.87ME2.,, + 4.31T 31.58 0.762 3.59 3.53

C y =118.31 + 0.87ME2,, + 0.32RH 31.48 0.760 3.58 3.52

D y =24.17 + 0.87ME2,, + 4T + 0.22RH 31.58 0.763 3.60 3.54

Table 4. CO, calibration models (ME1/ME2): Cross-validated performance (MAE, R*) and Improvement vs.

baseline (A)

CO,

ME1: better than B (MAE = 26.29 mg/m?; max. R? with D = 0.839); improvement vs. A = 0.04% in MAE (marginal).

MEZ2: better than C (MAE = 31.48 mg/m?; max. R? with D = 0.763); improvement vs. A = 0.82% in MAE (marginal)
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peaks that are also partially captured by ME1 and
ME?2, but with obvious attenuation in the signals
from the low-cost sensors. This discrepancy sug-
gests limitations in the sensitivity of ME sensors
to abrupt changes in CO concentration.

Regarding the environmental variables, rela-
tive humidity (RH) shows a constant trend dur-
ing the measurement, with slight fluctuations that
do not seem to significantly affect the response
of the sensors, given the low level of correlation
observed afterwards. On the other hand, tempera-
ture shows a moderate variation between 15 °C
and 35 °C, and its stable behavior could explain
the reduced effect of this parameter on the disper-
sion of the signals.

The correlation matrix (Figure 13) reinforc-
es these findings: both ME1 and ME2 exhibit a

ME2
Corr
1.0
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0.0
RH 013 | 02 | 02 - -
-1.0
Temp 0.2 0.08 0.08 0.12
X N V &
& \g/ % &
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Figure 13. CO correlation matrix
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strong correlation with the reference (R? of 0.92
and 0.93, respectively), evidencing a good overall
tracking capability of environmental CO trends.
However, the correlations between sensors and
meteorological variables (RH and Temp) are low
(between 0.08 and 0.20), suggesting that, in this
data set, environmental conditions do not signifi-
cantly affect the direct measurement of CO.

These results are relevant as they indicate
that, although there is good overall monitoring
of CO concentrations, additional calibrations or
correction models should consider the limited
response of the sensors to sharp peaks, particu-
larly under the conditions of high environmen-
tal variability. Similarly, the high correlation
between ME1, ME2 and the reference validates
the potential of these devices for low-cost urban
monitoring applications, although caution should
be exercised in the situations where maximum ac-
curacy is required at extreme values. Figure 14
presents the comparison between the CO concen-
trations measured by the ME1 and ME2 sensors,
in their raw and adjusted states, with respect to a
high precision reference. The scatter plots show
that, for both sensors, there is a positive linear re-
lationship between the sensor measurements and
the reference, indicating a basic ability to track
variations in CO levels.

In the raw plots, both ME1 and ME2 tend to
slightly overestimate CO concentrations compared
to the reference, with several points lying above
the identity line (dashed line). This systematic de-
viation suggests the need to apply correction mod-
els to improve the accuracy of the measurements.
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Figure 14. Measurement of CO
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After correction (Adjusted), the data dispersions
on both sensors show better alignment with the
reference. Especially in ME2, the point cloud is
closer to the identity line, indicating an improve-
ment in accuracy and reduction of systematic
bias. However, slight scattering is still observed,
particularly at higher CO concentration levels,
which could be related to intrinsic limitations in
the response range of the sensors.

Comparatively, the ME2 sensor seems to ben-
efit more from the applied adjustment, presenting
a more homogeneous distribution and lower error
with respect to the reference. On the other hand,
MEI1, although it improves substantially after the
correction, still presents some values far from the
line of equality, especially at high concentrations.

In conclusion, the implemented calibration
clearly improves the quality of CO measurements
for both sensors, bringing them closer to the expect-
ed behavior with respect to the reference. However,
there are still slight differences that should be con-
sidered, if these devices are used in highly demand-
ing applications, such as regulatory environmental
monitoring or epidemiological investigations.

Table 5 presents the performance of four cali-
bration models (Models A, B, C and D) for the
ME!1 and ME2 sensors in relation to a reference
measurement of carbon monoxide (CO) in parts
per billion (ppb). The following metrics were
evaluated: MAE, R?, MAPE (%) and SMAPE (%).

For MEL1, all models present a coefficient of
determination R?~ (0.928-0.929, which evidences
a very good explanatory capacity of the model,
with very little difference between considering
or not the adjustment variables (Temperature and
Relative Humidity). MAE ranges between 54.83
and 55.50 ppb, with Model B (with temperature as
an auxiliary variable) achieving the lowest mean

Table 5. Calibration in the measurement of CO

absolute error. In addition, SMAPE remains low
in all models, between 3.79% and 3.85%, indicat-
ing a very good symmetry in the relative errors.

For ME2, the results are similar, with R? also
close to 0.928-0.929, showing that the predictions
are highly consistent. MAE is slightly higher with
respect to ME1 (57.48 to 58.20 ppb), suggesting
that ME2 has slightly higher errors. The SMAPE
values for ME2 are between 4.02% and 4.07%,
very competitive for this type of low-cost sensor,
although slightly higher than those of ME1.

As for the models, for both sensors, Models
B and D tend to marginally improve the errors
with respect to the base model A, owing to the
incorporation of temperature and humidity. Mod-
el D (with T and RH) shows the lowest MAPE
and SMAPE for ME2 (17.33% MAPE and 4.02%
SMAPE), suggesting that including both environ-
mental variables improves the prediction slightly,
but consistently (Table 6).

The scatter plots in Figure 15 show the sen-
sor—reference relationship for each pollutant
(PM2.5, CO2, and CO) and platform (ME1 and
ME?2). The linear regression line (OLS) and its
95% confidence band are superimposed on the
observed points, quantifying the uncertainty of
the estimated mean of the response (reference)
conditioned on the predictor (sensor reading). Vi-
sually, the slope and intercept provide informa-
tion on scale bias (slope other than 1) and additive
bias (intercept other than 0), while the dispersion
of the points around the line reflects the residual
calibration error. The width of the band narrows
around the region with the most observations and
widens at the extremes (greater leverage), which
is to be expected in linear models.

Together, these figures allow: (i) confirming
whether the calibration captures the central trend

vode Equatn WRE T | WAE [ SwAPE

ME1

A 55.07 | 0.928 | 16.21 3.80

B y = —11.58 + 1.03ME1¢, + 4.67T 54.83 | 0928 | 15.02 3.79

C y =51.14 4+ 1.03ME1;, + 0.92RH 55.02 0.929 15.98 3.81

D y =450.10 + 1.02ME1., — 23.90T + 4.29RH 55.50 0.929 14.96 3.85
ME2

A y = 1.01ME2¢, + 59.16 5820 | 0.928 | 18.78 4.07

B y = —124.82 + 1.01ME2, + 7.39T 5764 | 0928 | 17.47 4.03

c y =16.60 + 1.01ME2¢, + 0.74RH 57.94 | 0928 | 1855 4.05

D y =—672.92 + 1.02ME2., + 41.13T — 5.06RH 57.48 0.929 17.33 4.02
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Table 6. CO calibration models (ME1/ME2): Cross-validated performance (MAE, R?) and Improvement vs.

baseline (A)

Cco

CO — ME1: better than B (MAE = 54.83 ppb; R* = 0.928-0.929); improvement vs. A = 0.44% in MAE (marginal)

CO — MEZ2: better than D (MAE = 57.48 ppb; R? = 0.929); improvement vs. A = 1.24% in MAE (marginal).
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Figure 15. Sensor vs. reference scatter plots with 95% confidence band for the six cases (PMa.s and CO: and
CO; ME1 and ME2 platforms). Points: observations; line: OLS fit; shading: 95% confidence band of the fit

between the sensor and the reference, (ii) iden-
tifying the possible non-linearities or saturation
zones (e.g., curvatures or range of residuals at
high concentrations), and (iii) comparing, for the
same pollutant, the relative performance of MEI
vs. ME2: a more compact cloud and a narrower
confidence band suggest greater model stability.
The visual interpretation is complemented by sta-
tistical analyses (ANOVA), which verify whether

12

the differences in performance between mod-
els A-D are significant. Figure 16. For the cases
where temperature (T) and relative humidity (RH)
are measured simultaneously, Model D (ME + T +
RH) and its 95% prediction interval are presented,
setting T and RH at their medians to isolate the
effect of the sensor signal (ME). Unlike the confi-
dence band, which describes the uncertainty about
the mean of the response, the prediction interval
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CO2 - ME1 | Modelo D con intervalo de prediccion (95%)
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Figure 16. 95% prediction interval for Model D (ME, T, and RH) with T and RH fixed at their medians. Line:
prediction; shading: 95% prediction interval, reflecting the expected variability of new observations (wider than
the confidence band)

also incorporates the residual variability of future
observations; therefore, it is wider and represents
the total prediction uncertainty for new data. This
visualization allows the practical usefulness of the
calibration to be evaluated: a narrow prediction
band suggests that, given ME, T, and RH, future
reference observations will fall within a narrow
range (better predictive capacity). Likewise, when
comparing platforms, a systematic shift in the
curve or a greater amplitude of the interval indi-
cates greater unexplained error or residual sensi-
tivity to T/RH. The consistency between these fig-
ures and the ANOVA/Tukey results supports when
the joint inclusion of T and RH provides real gains
in accuracy over simpler models.

As it can be seen in Table 7, the analysis of
variance with repeated measures revealed over-
all differences between models in five of the six
contaminant-platform combinations. For CO,
significant differences were observed in both
ME1l (F(3,8)=76.31, p=6.16x10°) and ME2
(F(3,8)=26.44, p=0.000298); in both cases, the
best performance corresponded to C (ME+RH),
with 77.61+11.96 ppb in ME1 and 138.09+28.64

Table 7. ANOVA statistical comparison

ppb in ME2. For CO., there were also overall
differences (ME1: F(3,12)=25.56, p=1.69x10"%;
ME2: F(3,12)=18.7, p=8.09x107%), but the win-
ning model was platform-dependent: in ME1, D
(ME+T+RH) prevailed with 29.42+6.14, while in
ME2, the lowest MAE was obtained by A (ME)
with 28.70+5.35. In PM..s, the effect was un-
even: in ME1, no differences were detected be-
tween models (F(3,8)=0.447, p=0.654) and, for
parsimony, the best average was A (ME) with
1.31£0.24 pg/m?; in ME2 there were differences
(F(3,8)=6.565, p=0.0205) and B (ME+T) was
superior with 1.79+£0.32 pg/m?. Overall, the re-
sults confirm that the inclusion of environmental
covariates can reduce calibration error, although
their benefit is specific to the pollutant.

DISCUSSION

The results show that the comparison be-
tween A-D calibration models is not uniform
across contaminants or platforms. For CO, ANO-
VA detected overall differences in ME1 and ME2

Contaminante Plataforma ANOVA p Mejo;qr:::il%(El\;lAE_
CcO ME1 F(3.8) = 76.31 6.16e-06 C (77.61 £ 11.96)
CO ME2 F(3.8) =26.44 0.000298 C (138.09 + 28.64)
CO2 ME1 F(3.12) = 25.56 1.69e-05 D (29.42 £+ 6.14)
CO2 ME2 F(3.12)=18.7 8.09e-05 A (28.70 + 5.35)
PM25 ME1 F(3.8) =0.447 0.654 A(1.31+£0.24)
PM25 ME2 F(3.8) = 6.565 0.0205 B (1.79 £0.32)
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(p«0.001), and Model C (ME+RH) performed
best; this suggests cross-sensitivity to humidity
in electrochemical CO measurement and sup-
ports the inclusion of RH as a corrective covari-
ate. For CO., there were significant differences,
but the winning model depended on the sensor: in
ME1, Model D (ME+T+RH) obtained the lowest
MAE, while in ME2, A (ME only) was sufficient,
pointing to different designs/firmware or thermal
response between platforms; adding T and RH
does not always help when the electronics already
partially compensate for these effects. In PM..s,
ME1 showed no significant differences between
models, indicating that the base form (A) captures
variability well; in ME2, B (ME+T) outperformed
the others, probably because air density/tempera-
ture slightly influences the optical response of the
ME2 channel. These conclusions are supported
by the reported fit statistics (MAE and R?) and by
the ANOVA by pollutant/platform, which identi-
fies the model with the lowest average error.
From a practical perspective, the benefit of
adding covariates was moderate for PMz.s and
CO: and clearer for CO; therefore, specific model
selection is recommended for each pollutant and
platform: D or B should be used when RH/T pro-
vide systematic error reduction, and A should be
retained when the gain is marginal (avoiding over-
fitting and unnecessary complexity). The 95%
confidence bands in the scatter plots visually con-
firm the consistency of the fit around the straight
line and help identify areas of greater uncertainty.
Limitations and future work. The study was
conducted at a single site and over a short period,
which limits seasonal and spatial generalization; in
addition, there may be uncaptured drifts. As a next
step, the following are suggested: (i) replicating at
multiple sites and seasons, (ii) extending the cam-
paign to capture broad meteorological variability,
(iii) comparing with nonlinear models (e.g., ran-
dom forests, boosting, neural networks) as an ad-
ditional baseline, and (iv) publishing calibration
equations and scripts to promote reproducibility.
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