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INTRODUCTION

Air quality is one of the most challenging 
global public health issues. According to the 
World Health Organization (WHO), air pollution 
is responsible for approximately seven million 
premature deaths per year, with fine particulate 
matter (PM2.5) and gases such as carbon dioxide 
(CO₂) and carbon monoxide (CO) being the main 
culprits (WHO, 2021). In Latin America, despite 
being less industrialized compared to other re-
gions, there has been an increase in emissions 
in recent years due to urban growth, unregulated 

transportation and deficiencies in environmental 
monitoring. [1–3]. In middle- and low-income 
countries, such as Ecuador, the problem is ex-
acerbated by limited infrastructure for continu-
ous environmental monitoring. According to the 
data from the Ministry of Environment, Water 
and Ecological Transition (MAATE), the PM2.5 
levels in urban areas, such as Quito and Guaya-
quil, have exceeded 25 µg/m³ on a daily average, 
a value that exceeds both the limits recommended 
by the WHO (15 µg/m³ per year) and the maxi-
mum permissible limits established in the country 
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(50 µg/m³ for PM2.5 in 24 hours according to 
MAATE Technical Standard No. 097-A). [4–7]

This research presents a proposal for the use, 
calibration and validation of low-cost sensors 
(LCS) for the measurement of air pollutants, us-
ing multivariable mathematical models that in-
clude corrections for temperature and relative hu-
midity [8–11]. Unlike previous studies that only 
evaluated the linear correlation between sensors 
and reference equipment, this work incorporated 
four types of models (A, B, C and D) that al-
low evaluating the behavior of the sensors under 
changing environmental conditions and compar-
ing them with quantitative criteria such as MAE, 
R², MAPE and SMAPE. [8, 12]

The importance of this research lies in its ap-
plicability for research work with limited resourc-
es, such as the Ecuadorian case, where air qual-
ity monitoring networks are scarce and costly to 
maintain. By demonstrating that inexpensive sen-
sors can be adequately calibrated to fulfill indica-
tive monitoring functions, an opportunity opens 
up to expand the coverage of environmental sur-
veillance, contribute to compliance with national 
regulations and promote evidence-based public 
policies [10, 11]

Recent studies have delved into field calibra-
tion and statistical validation of low-cost sensors. 
For example, [13] showed how statistical correc-
tion in municipal networks reduces systematic 
biases at the neighborhood level; [14] evaluated 
calibration methods and reported modest but con-
sistent improvements when environmental vari-
ables are incorporated; whereas [9] developed 
a multi-pollutant system and documented the 
usefulness of real-time multivariate approaches. 
The conducted work aligns with these findings by 
incorporating temperature and relative humidity 
into calibration models and advances by compar-
ing four A–D formulations in parallel (with MAE, 
R², MAPE, and SMAPE metrics) and reporting 
the incremental benefit of environmental vari-
ables, especially for PM₂.₅.

Methodology

This study focused on evaluating the perfor-
mance of low-cost sensors (ME) for real-time 
monitoring of air pollutants, namely PM2.5, car-
bon dioxide (CO₂) and carbon monoxide (CO). A 
quantitative experimental design was used with 
a comparative approach between low-cost sensor 
readings and reference instruments. [15, 16]

The sensors selected were Sensor 0177 for 
PM2.5 and Sensor 0132 for CO and CO₂, [17–
20]. They were chosen for their high availability, 
low cost and documented suitability for air qual-
ity monitoring applications. The sensors were 
integrated into platforms named ME1 and ME2 
configured to record data at one-minute intervals. 
[13, 14, 21–23]. The 0177 sensor is an air qual-
ity sensor that uses a laser to measure the con-
centration of PM2.5 particles (fine particles with 
a diameter of 2.5 micrometers or less) in the air 
[24, 25]. This sensor provides accurate and real-
time data on the amount of airborne particles in 
a range of 0.3 to 10 micrometers, the measurable 
particle diameter is 0.3~1.0, 1.0~2.5, and 2.5~10 
micrometers. The 0132 sensor is designed to de-
tect the concentration of CO and CO₂ in air, mea-
suring concentrations between 20 to 2000 ppm, 
it offers an analog output interface, its sensitivity 
can be adjusted with an integrated potentiometer, 
as shown in Figure 1.

Study and site design

The study evaluated the calibration of low-
cost sensors for PM₂.₅, CO₂, and CO installed on 
two platforms (ME1 and ME2), compared against 
co-located reference stations. The campaign was 
conducted over 15 days in the city of Milagro, 
Ecuador, with variable weather conditions of 
temperature (T) and relative humidity (RH) rep-
resentative of the period. Sensors ME1 and ME2 
(Figure 2) were deployed together with reference 
instruments for at least 15 days in the center of 
the city of Milagro. Temperature (°C) and rela-
tive humidity (%) were also recorded simultane-
ously. The data were recorded in CSV format and 
processed in R (version 4.3.1) using the packages 
tidyverse, lubridate and ggplot2. Each platform 
recorded data every minute for 15 consecutive 
days, generating 21,600 records per variable and 
per platform. After cleaning (removal of nega-
tives/duplicates, alignment by timestamp, and 
linear interpolation of short gaps), approximately 
10.000 data points remained for ME1 and ME2 
observations per pollutant. The analysis was per-
formed on these synchronized and refined series.

Equipment and variables

	• Sensors: ME1 and ME2 platforms with chan-
nels for PM₂.₅, CO₂, and CO (gross ME output 
per channel).
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	• References: certified monitors for PM₂.₅ 
(μg·m⁻³), CO₂ (mg·m⁻³), and CO (ppb).

	• Environmental covariates: air temperature (T, °C) 
and relative humidity (RH, %) measured locally.

Data acquisition and preprocessing

	• Sampling frequency: 1 min
	• Synchronization: sensor and reference series 

were aligned by timestamp and interpolated or 
averaged to the common resolution of 5 min 
when necessary.

	• Cleaning and quality control:
−	 Elimination of duplicates and records with 

invalid dates.
−	 Exclusion of physically impossible values 

such as negative values and values outside 
the range of the equipment [24–26].

	• Sample size: number of observations per pol-
lutant and platform after cleaning was approx-
imately 10.000 data points for each pollutant

Negative or erroneous readings were filtered 
out and time stamps were aligned by linear inter-
polation to ensure comparability between time se-
ries. Duplicate and missing entries were removed, 
and outliers were detected using Tukey’s method 
and Z-score analysis.

Calibration models

Four mathematical calibration models (A–D) 
were developed for each sensor based on previ-
ous research:
	• Model A: Simple calibration using only the 

raw output of the ME1 or ME2 sensor.
	• Model B: Multivariate calibration including 

temperature (T).
	• Model C: Multivariate calibration including 

relative humidity (RH).
	• Model D: Combined multivariate calibration 

using ME, T and RH.

The general forms of the models were:
	• Model A: y = β₀ + β₁.ME
	• Model B: y = β₀ + β₁-ME + β₂.T
	• Model C: y = β₀ + β₁-ME + β₂.RH
	• Model D: y = β₀ + β₁.ME + β₂.T + β₃.RH.
	• donde “𝑦” es la concentración de la referencia, 

ME la lectura del sensor.

Performance metrics calculated for each 
model included mean absolute error (MAE), co-
efficient of determination (R²), mean absolute 
percentage error (MAPE) and symmetric MAPE 
(SMAPE). They were calculated separately for 
ME1 and ME2 and compared between models. 
Statistical analysis and visualization were per-
formed in R. Scatter plots and time series were 
created with ggplot2; correlations were evaluated 

Figure 1. Composition of sensors

Figure 2. Placement of sensors
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with ggcorrplot, and regression fits were visual-
ized with geom_smooth(method = “lm”). Five-
fold cross-validation was applied to ensure ro-
bustness of model comparisons. [27–30]. To for-
mally compare the performance of the four mod-
els (A–D), k=5 cross-validation was applied by 
time blocks. In each fold, the model was trained 
on the four time quintiles and evaluated on the 
remaining quintile.

A repeated measures ANOVA was performed 
on the metrics per fold (MAE and R²) with fold 
as a block (Error(fold)) and Model (A–D) as a 
fixed factor. Additionally, a linear mixed model 
with random intercept per fold was fitted for more 
robust contrasts, and Tukey post hoc comparisons 
(multiplicity adjustment) were performed be-
tween pairs of models. As a sensitivity analysis, 
paired Student’s t-tests were calculated between 
pairs of models per fold. For visualization, the 
scatter plots include the 95% confidence band of 

the linear fit, and for model D, a 95% prediction 
interval is reported at the median temperature and 
humidity of the evaluated set.

ANALYSIS OF RESULTS

Analysis of PM₂.₅

The relative humidity graph (Figure 3), shows 
the behavior over time of PM₂.₅ captured by the 
low-cost sensors (ME1 and ME2) compared to 
the reference instrument, along with the evolu-
tion of relative humidity (RH). It is observed that 
both sensors manage to adequately replicate the 
PM₂.₅ concentration trends, although they pres-
ent slight variations in the high concentration 
peaks. RH evidences a daily variability, without 
a very marked direct relationship with PM₂.₅ lev-
els. The temperature graph (Figure 4) presents the 

Figure 3. Relative humidity and PM2.5

Figure 4. Temperature and PM2.5



5

Journal of Ecological Engineering 2026, 27(2) 1–15

comparison of PM₂.₅ It was identified that both 
ME1 and ME2 follow in a very similar way the 
trend of the reference, particularly in the daily 
rises and falls, while temperature remains more 
stable, suggesting a lower direct influence of this 
variable on PM₂.₅ concentrations in this measure-
ment period.

The correlation matrix (Figure 5) demon-
strates the obtained findings, showing high cor-
relation coefficients between the ME1 and ME2 
sensors with respect to the reference instrument 
(0.98 and 0.94, respectively), which evidences 
a strong linear relationship and a good ability 
to reproduce the real PM₂.₅ values. The correla-
tion between RH and PM₂.₅ measurements is low 

(between 0.12 and 0.15), indicating that relative 
humidity did not significantly affect the measure-
ment during the experiment. Likewise, tempera-
ture shows even lower correlations (between 0.04 
and 0.09), confirming its low influence in the ana-
lyzed period.

Figure 6 presents the relationship between 
the PM₂.₅ concentrations measured by the low-
cost sensors (ME1 and ME2) and the reference 
measurements, both before and after the calibra-
tion process. In the first graph (“ME1 vs Refer-
ence (Uncorrected)”), it can be seen that the ME1 
sensor, without correction, shows a reasonably 
strong linear trend with the reference, albeit with 
some scatter in the data, particularly at concentra-
tions greater than 20 µg/m³.

After calibration (“ME1 vs Reference (Cor-
rected)”), the scatter decreases markedly and the 
points align much more closely along the line 
of identity (dashed line), indicating a significant 
improvement in the accuracy of the sensor. This 
result suggests that the fitting model applied to 
ME1 was highly effective. Similarly, the ME2 
sensor (“ME2 vs Reference (Uncorrected)”) also 
exhibits a positive correlation before correction, 
but with greater data variability relative to ME1, 
especially at the upper extremes of concentra-
tion. After calibration (“ME2 vs Reference (Cor-
rected)”), the ME2 data improves in alignment, 
although the fit is not as perfect as in the case of 
ME1, indicating that the corrective model had a Figure 5. PM2.5 correlation

Figure 6. PM2.5 concentration
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positive impact, but that there is still room for im-
provement for the ME2 sensor.

The results obtained from the calibration 
models for the ME1 and ME2 sensors show a 
considerable improvement in accuracy and preci-
sion after multivariate adjustment. In the case of 
the ME1 sensor, the simplest model (Model A) 
presents a coefficient of determination R² = 0.951 
and a MAE of 3.54 µg/m³, indicating a strong 
but still perfectible relationship with respect to 
the reference values. By introducing additional 
variables, such as temperature (T) in Model B 
and relative humidity (RH) in Model C, a pro-
gressive improvement in the metrics is observed. 
Model D, which simultaneously integrates T and 
RH, achieves the best performance with R² = 
0.963, MAE = 3.24 µg/m³, MAPE = 14.96% and 
SMAPE = 13.75%, evidencing that multivariate 
calibration is highly effective in improving the re-
sponse of the ME1 sensor.

For the ME2 sensor, a similar pattern is ob-
served, although with slightly lower values than 
ME1. The initial model (Model A) starts with R² 
= 0.944 and MAE = 4.27 µg/m³. The incorpora-
tion of T in Model B and RH in Model C improves 
the metrics, highlighting Model D, which inte-
grates both variables and achieves an R² of 0.957, 
a MAE of 3.92 µg/m³, a MAPE of 17.33% and a 
SMAPE of 15.66%. Despite the improvements, 
the relative errors (MAPE and SMAPE) are high-
er in ME2 than in ME1, suggesting that the ME2 
sensor has greater inherent variability or sensitiv-
ity to unmodeled environmental conditions.

For both sensors, it is highlighted that the ad-
dition of temperature and humidity as indepen-
dent variables in the regression models consis-
tently improves the fit. This evidences the impor-
tance of considering environmental factors in the 

calibration of low-cost sensors for PM₂.₅ measure-
ments. Also, the SMAPE values obtained, which 
remain around 14–16%, indicate an acceptable 
relative error for environmental monitoring ap-
plications of an indicative type or in support of 
official networks (Table 1, 2).

Figure 7 shows the temporal evolution of 
CO₂ concentrations measured by sensors ME1 
and ME2 compared to a reference instrument, 
together with the evolution of the environmental 
variables of relative humidity (RH) and tempera-
ture (Figure 8). It is observed that both sensors, 
although following the general trends of the refer-
ence, present variations in magnitude throughout 
the measurement period. The ME1 sensor tends to 
slightly overestimate the CO₂ values with respect 
to the reference, while the ME2 sensor shows a 
more marked underestimation, as evidenced in 
the humidity and temperature plots.

The impact of environmental conditions is re-
flected in the observed correlations. The correla-
tion matrix shows that ME1 has a correlation of 
0.92 with the reference value, while ME2 reaches 
0.93, suggesting a high capacity of both sensors 
to capture CO₂ variability, although with system-
atic differences in magnitude. However, the cor-
relation levels of the sensors with RH and tem-
perature are low (around 0.08 to 0.2), indicating 
that, despite the influence of these variables, their 
effect is not dominant in the range of variability 
studied (Figure 9).

The trend of relative humidity shows smooth-
er variations than those of CO₂, while tempera-
ture, although less variable, presents certain peaks 
that coincide with fluctuations in CO₂ concentra-
tion, suggesting an indirect interaction. This en-
vironmental influence should be considered in 
advanced calibrations to improve accuracy.

Table 1. Calibration of low-cost PM2.5 sensors
Model Equation MAE 

(µg/m³) R² MAPE 
(%) 

SMAPE 
(%) 

ME1 

A 𝑦𝑦 = 0.902 ∗ 𝑀𝑀𝑀𝑀1𝑃𝑃𝑃𝑃2.5 + 0.999 3.54 0.951 16.21 14.91 

B 𝑦𝑦 = 0.114 + 0.901𝑀𝑀𝑀𝑀1𝑃𝑃𝑃𝑃2.5 + 0.036𝑇𝑇 3.27 0.962 15.02 13.80 

C 𝑦𝑦 = 0.116 + 0.9𝑀𝑀𝑀𝑀1𝑃𝑃𝑃𝑃2.5 + 0.017𝑅𝑅𝑅𝑅 3.49 0.953 15.98 14.71 

D 𝑦𝑦 = −0.601 + 0.899𝑀𝑀𝑀𝑀1𝑃𝑃𝑃𝑃2.5 + 0.03𝑇𝑇 + 0.016𝑅𝑅𝑅𝑅 3.24 0.963 14.96 13.75 

ME2 

A 𝑦𝑦 = 0.922𝑀𝑀𝑀𝑀2𝑃𝑃𝑃𝑃2.5 + 0.678 4.27 0.944 18.78 16.99 

B 𝑦𝑦 = 0.617 + 0.992𝑀𝑀𝑀𝑀2𝑃𝑃𝑃𝑃2.5 + 0.002𝑇𝑇 3.96 0.956 17.47 15.79 

C 𝑦𝑦 = 0.141 + 0.921𝑀𝑀𝑀𝑀2𝑃𝑃𝑃𝑃2.5 + 0.01𝑅𝑅𝑅𝑅 4.23 0.947 18.55 16.76 

D 𝑦𝑦 = 0.16 + 0.921𝑀𝑀𝑀𝑀2𝑃𝑃𝑃𝑃2.5 − 0.001𝑇𝑇 + 0.011𝑅𝑅𝑅𝑅 3.92 0.957 17.33 15.66 
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Table 2. PM2.5 calibration models (ME1/ME2): Cross-validated performance (MAE, R²) and Improvement vs. 
baseline (A)

PM2.5

ME1: better D (MAE = 3.24 µg/m³; R² = 0.963); improvement vs. A = 8.47% in MAE

ME2: better D (MAE = 3.92 µg/m³; R² = 0.957); improvement vs. A = 8.20% in MAE

Figure 7. Relative humidity in the measurement of CO2

Figure 8. Temperature in CO2 measurement

Figure 9. CO2 correlation

Figure 10 compares the carbon dioxide (CO₂) 
concentration measurements obtained by the 
ME1 and ME2 sensors versus the reference in-
strument, both in their raw state (Raw) and after 
adjustment (Adjusted). In the Raw data plots, it is 
observed that the measurements of both sensors 
present a larger scatter around the identity line 
(dashed line), particularly ME2, indicating sig-
nificant biases and systematic errors before any 
calibration process.

After applying the fit models, the Adjusted 
plots show a marked improvement in the align-
ment of the data with respect to the reference. For 
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ME1, calibration reduces the scatter and brings 
the data significantly closer to the ideal line, re-
flecting a successful fit. For ME2, although the 
calibration improves the trends, a slight scatter 
remains, indicating that, although the model cor-
rects the overall trend, residual errors – that could 
be optimized with more complex techniques or 
with the inclusion of additional environmental 
variables – still persist.

In terms of interpretation, the fit has system-
atically reduced the prediction errors for both 
sensors, as can be deduced from the slope of the 
regressions, which is closer to 1, and the inter-
sections closer to 0. In addition, the smaller sepa-
ration between the fitted regression line and the 
identity line in the corrected plots suggests a high 
ability of the sensors to reproduce CO₂ levels 
once calibrated.

The calibration of the ME1 and ME2 sensors 
against CO₂ reference measurements shows differ-
entiated performances according to the mathemati-
cal model used. For ME1, all models (A-D) present 
a low mean absolute error (MAE), close to 26.3 mg/
m³, and a coefficient of determination (R²) higher 
than 0.83, indicating a good fit of the predictions to 
the reference values. The inclusion of environmen-
tal variables, such as temperature (T) and relative 
humidity (RH) slightly improves the R², reaching a 
maximum value of 0.839 in Model D.

Regarding the relative errors, the MAPE 
for ME1 remains around 2.97–2.98%, while 
SMAPE, a robust indicator in the face of extreme 
values, is consistently around 2.93–2.94%. These 

low values suggest high prediction accuracy and 
confirm that the calibrations performed are ef-
fective for environmental applications requiring 
high accuracy.

In the case of the ME2 sensor, the errors are 
slightly higher. The MAE oscillates around 31.5 
mg/m³, and the R² is somewhat lower, in the range 
of 0.759–0.763. Although the models that include 
temperature and humidity (Models B–D) achieve 
small improvements in R², the increase is not as 
pronounced as in ME1, indicating that ME2 has 
greater linearity or intrinsic stability limitations. 
The MAPE and SMAPE for ME2 remain low 
(3.58–3.61% and 3.52–3.55%, respectively), but 
higher than those obtained for ME1, reflecting 
slightly lower performance.

Overall, the results show that the ME1 sen-
sors offer a more robust and reliable response 
compared to ME2. In addition, the incorporation 
of auxiliary meteorological variables such as tem-
perature and humidity improves the performance 
of both sensors, although more significantly in 
ME1. The choice of the calibration model should 
consider not only the values of R², MAE and 
MAPE, but also the operational stability of the 
sensor under varying environmental conditions. 
See Table 3, 4.

In the temporal behavior plots (Figures 11 
and 12), it is observed that the scaled signals from 
the ME1 and ME2 carbon monoxide (CO) sen-
sors reasonably replicate the trends of the refer-
ence, albeit with differences in magnitude. The 
CO Reference_ppb values exhibit pronounced 

Figure 10. Measurement of the CO2 concentration
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Table 3. Calibration of the CO2 sensors

Table 4. CO2 calibration models (ME1/ME2): Cross-validated performance (MAE, R²) and Improvement vs. 
baseline (A)

CO₂

ME1: better than B (MAE = 26.29 mg/m³; max. R² with D = 0.839); improvement vs. A = 0.04% in MAE (marginal).

ME2: better than C (MAE = 31.48 mg/m³; max. R² with D = 0.763); improvement vs. A = 0.82% in MAE (marginal)

Figure 11. Relative humidity and CO

Figure 12. Temperature at CO

Model Equation MAE 
(mg/m³) R² MAPE (%) SMAPE 

(%) 
ME1 

A 𝑦𝑦 = 0.65 ∗ 𝑀𝑀𝑀𝑀1𝐶𝐶𝐶𝐶2 + 159.53 26.30 0.831 2.97 2.93 

B 𝑦𝑦 = 86.58 + 0.65𝑀𝑀𝑀𝑀1𝐶𝐶𝐶𝐶2 + 2.98𝑇𝑇 26.29 0.832 2.97 2.93 

C 𝑦𝑦 = 117.90 + 0.65𝑀𝑀𝑀𝑀1𝐶𝐶𝐶𝐶2 + 0.84𝑅𝑅𝑅𝑅 26.30 0.838 2.97 2.93 

D 𝑦𝑦 = 74.98 + 0.65𝑀𝑀𝑀𝑀1𝐶𝐶𝐶𝐶2 + 1.85𝑇𝑇 + 0.79𝑅𝑅𝑅𝑅 26.37 0.839 2.98 2.94 

ME2 

A 𝑦𝑦 = 0.88𝑀𝑀𝑀𝑀2𝐶𝐶𝐶𝐶2 + 131.81 31.74 0.759 3.61 3.55 

B 𝑦𝑦 = 25.88 + 0.87𝑀𝑀𝑀𝑀2𝐶𝐶𝐶𝐶2 + 4.31𝑇𝑇 31.58 0.762 3.59 3.53 

C 𝑦𝑦 = 118.31 + 0.87𝑀𝑀𝑀𝑀2𝐶𝐶𝐶𝐶2 + 0.32𝑅𝑅𝑅𝑅 31.48 0.760 3.58 3.52 

D 𝑦𝑦 = 24.17 + 0.87𝑀𝑀𝑀𝑀2𝐶𝐶𝐶𝐶2 + 4𝑇𝑇 + 0.22𝑅𝑅𝑅𝑅 31.58 0.763 3.60 3.54 
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peaks that are also partially captured by ME1 and 
ME2, but with obvious attenuation in the signals 
from the low-cost sensors. This discrepancy sug-
gests limitations in the sensitivity of ME sensors 
to abrupt changes in CO concentration.

Regarding the environmental variables, rela-
tive humidity (RH) shows a constant trend dur-
ing the measurement, with slight fluctuations that 
do not seem to significantly affect the response 
of the sensors, given the low level of correlation 
observed afterwards. On the other hand, tempera-
ture shows a moderate variation between 15 °C 
and 35 °C, and its stable behavior could explain 
the reduced effect of this parameter on the disper-
sion of the signals.

The correlation matrix (Figure 13) reinforc-
es these findings: both ME1 and ME2 exhibit a 

strong correlation with the reference (R² of 0.92 
and 0.93, respectively), evidencing a good overall 
tracking capability of environmental CO trends. 
However, the correlations between sensors and 
meteorological variables (RH and Temp) are low 
(between 0.08 and 0.20), suggesting that, in this 
data set, environmental conditions do not signifi-
cantly affect the direct measurement of CO.

These results are relevant as they indicate 
that, although there is good overall monitoring 
of CO concentrations, additional calibrations or 
correction models should consider the limited 
response of the sensors to sharp peaks, particu-
larly under the conditions of high environmen-
tal variability. Similarly, the high correlation 
between ME1, ME2 and the reference validates 
the potential of these devices for low-cost urban 
monitoring applications, although caution should 
be exercised in the situations where maximum ac-
curacy is required at extreme values. Figure 14 
presents the comparison between the CO concen-
trations measured by the ME1 and ME2 sensors, 
in their raw and adjusted states, with respect to a 
high precision reference. The scatter plots show 
that, for both sensors, there is a positive linear re-
lationship between the sensor measurements and 
the reference, indicating a basic ability to track 
variations in CO levels.

In the raw plots, both ME1 and ME2 tend to 
slightly overestimate CO concentrations compared 
to the reference, with several points lying above 
the identity line (dashed line). This systematic de-
viation suggests the need to apply correction mod-
els to improve the accuracy of the measurements. Figure 13. CO correlation matrix

Figure 14. Measurement of CO
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After correction (Adjusted), the data dispersions 
on both sensors show better alignment with the 
reference. Especially in ME2, the point cloud is 
closer to the identity line, indicating an improve-
ment in accuracy and reduction of systematic 
bias. However, slight scattering is still observed, 
particularly at higher CO concentration levels, 
which could be related to intrinsic limitations in 
the response range of the sensors.

Comparatively, the ME2 sensor seems to ben-
efit more from the applied adjustment, presenting 
a more homogeneous distribution and lower error 
with respect to the reference. On the other hand, 
ME1, although it improves substantially after the 
correction, still presents some values far from the 
line of equality, especially at high concentrations.

In conclusion, the implemented calibration 
clearly improves the quality of CO measurements 
for both sensors, bringing them closer to the expect-
ed behavior with respect to the reference. However, 
there are still slight differences that should be con-
sidered, if these devices are used in highly demand-
ing applications, such as regulatory environmental 
monitoring or epidemiological investigations.

Table 5 presents the performance of four cali-
bration models (Models A, B, C and D) for the 
ME1 and ME2 sensors in relation to a reference 
measurement of carbon monoxide (CO) in parts 
per billion (ppb). The following metrics were 
evaluated: MAE, R², MAPE (%) and SMAPE (%).

For ME1, all models present a coefficient of 
determination R² ≈ 0.928–0.929, which evidences 
a very good explanatory capacity of the model, 
with very little difference between considering 
or not the adjustment variables (Temperature and 
Relative Humidity). MAE ranges between 54.83 
and 55.50 ppb, with Model B (with temperature as 
an auxiliary variable) achieving the lowest mean 

absolute error. In addition, SMAPE remains low 
in all models, between 3.79% and 3.85%, indicat-
ing a very good symmetry in the relative errors.

For ME2, the results are similar, with R² also 
close to 0.928–0.929, showing that the predictions 
are highly consistent. MAE is slightly higher with 
respect to ME1 (57.48 to 58.20 ppb), suggesting 
that ME2 has slightly higher errors. The SMAPE 
values for ME2 are between 4.02% and 4.07%, 
very competitive for this type of low-cost sensor, 
although slightly higher than those of ME1.

As for the models, for both sensors, Models 
B and D tend to marginally improve the errors 
with respect to the base model A, owing to the 
incorporation of temperature and humidity. Mod-
el D (with T and RH) shows the lowest MAPE 
and SMAPE for ME2 (17.33% MAPE and 4.02% 
SMAPE), suggesting that including both environ-
mental variables improves the prediction slightly, 
but consistently (Table 6).

The scatter plots in Figure 15 show the sen-
sor–reference relationship for each pollutant 
(PM₂.₅, CO₂, and CO) and platform (ME1 and 
ME2). The linear regression line (OLS) and its 
95% confidence band are superimposed on the 
observed points, quantifying the uncertainty of 
the estimated mean of the response (reference) 
conditioned on the predictor (sensor reading). Vi-
sually, the slope and intercept provide informa-
tion on scale bias (slope other than 1) and additive 
bias (intercept other than 0), while the dispersion 
of the points around the line reflects the residual 
calibration error. The width of the band narrows 
around the region with the most observations and 
widens at the extremes (greater leverage), which 
is to be expected in linear models.

Together, these figures allow: (i) confirming 
whether the calibration captures the central trend 

Table 5. Calibration in the measurement of CO
Model Equation MAE 

(ppb) R² MAPE 
(%) 

SMAPE 
(%) 

ME1 

A  55.07 0.928 16.21 3.80 

B 𝑦𝑦 = −11.58 + 1.03𝑀𝑀𝑀𝑀1𝐶𝐶𝐶𝐶 + 4.67𝑇𝑇 54.83 0.928 15.02 3.79 

C 𝑦𝑦 = 51.14 + 1.03𝑀𝑀𝑀𝑀1𝐶𝐶𝐶𝐶 + 0.92𝑅𝑅𝑅𝑅 55.02 0.929 15.98 3.81 

D 𝑦𝑦 = 450.10 + 1.02𝑀𝑀𝑀𝑀1𝐶𝐶𝐶𝐶 − 23.90𝑇𝑇 + 4.29𝑅𝑅𝑅𝑅 55.50 0.929 14.96 3.85 

ME2 

A 𝑦𝑦 = 1.01𝑀𝑀𝑀𝑀2𝐶𝐶𝐶𝐶 + 59.16 58.20 0.928 18.78 4.07 

B 𝑦𝑦 = −124.82 + 1.01𝑀𝑀𝑀𝑀2𝐶𝐶𝐶𝐶 + 7.39𝑇𝑇 57.64 0.928 17.47 4.03 

C 𝑦𝑦 = 16.60 + 1.01𝑀𝑀𝑀𝑀2𝐶𝐶𝐶𝐶 + 0.74𝑅𝑅𝑅𝑅 57.94 0.928 18.55 4.05 

D 𝑦𝑦 = −672.92 + 1.02𝑀𝑀𝑀𝑀2𝐶𝐶𝐶𝐶 + 41.13𝑇𝑇 − 5.06𝑅𝑅𝑅𝑅 57.48 0.929 17.33 4.02 
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Table 6. CO calibration models (ME1/ME2): Cross-validated performance (MAE, R²) and Improvement vs. 
baseline (A)

CO

CO — ME1: better than B (MAE = 54.83 ppb; R² ≈ 0.928–0.929); improvement vs. A = 0.44% in MAE (marginal)

CO — ME2: better than D (MAE = 57.48 ppb; R² ≈ 0.929); improvement vs. A = 1.24% in MAE (marginal).

between the sensor and the reference, (ii) iden-
tifying the possible non-linearities or saturation 
zones (e.g., curvatures or range of residuals at 
high concentrations), and (iii) comparing, for the 
same pollutant, the relative performance of ME1 
vs. ME2: a more compact cloud and a narrower 
confidence band suggest greater model stability. 
The visual interpretation is complemented by sta-
tistical analyses (ANOVA), which verify whether 

the differences in performance between mod-
els A–D are significant. Figure 16. For the cases 
where temperature (T) and relative humidity (RH) 
are measured simultaneously, Model D (ME + T + 
RH) and its 95% prediction interval are presented, 
setting T and RH at their medians to isolate the 
effect of the sensor signal (ME). Unlike the confi-
dence band, which describes the uncertainty about 
the mean of the response, the prediction interval 

Figure 15. Sensor vs. reference scatter plots with 95% confidence band for the six cases (PM₂.₅ and CO₂ and 
CO; ME1 and ME2 platforms). Points: observations; line: OLS fit; shading: 95% confidence band of the fit
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also incorporates the residual variability of future 
observations; therefore, it is wider and represents 
the total prediction uncertainty for new data. This 
visualization allows the practical usefulness of the 
calibration to be evaluated: a narrow prediction 
band suggests that, given ME, T, and RH, future 
reference observations will fall within a narrow 
range (better predictive capacity). Likewise, when 
comparing platforms, a systematic shift in the 
curve or a greater amplitude of the interval indi-
cates greater unexplained error or residual sensi-
tivity to T/RH. The consistency between these fig-
ures and the ANOVA/Tukey results supports when 
the joint inclusion of T and RH provides real gains 
in accuracy over simpler models.

As it can be seen in Table 7, the analysis of 
variance with repeated measures revealed over-
all differences between models in five of the six 
contaminant-platform combinations. For CO, 
significant differences were observed in both 
ME1 (F(3,8)=76.31, p=6.16×10⁻⁶) and ME2 
(F(3,8)=26.44, p=0.000298); in both cases, the 
best performance corresponded to C (ME+RH), 
with 77.61±11.96 ppb in ME1 and 138.09±28.64 

ppb in ME2. For CO₂, there were also overall 
differences (ME1: F(3,12)=25.56, p=1.69×10⁻⁵; 
ME2: F(3,12)=18.7, p=8.09×10⁻⁵), but the win-
ning model was platform-dependent: in ME1, D 
(ME+T+RH) prevailed with 29.42±6.14, while in 
ME2, the lowest MAE was obtained by A (ME) 
with 28.70±5.35. In PM₂.₅, the effect was un-
even: in ME1, no differences were detected be-
tween models (F(3,8)=0.447, p=0.654) and, for 
parsimony, the best average was A (ME) with 
1.31±0.24 μg/m³; in ME2 there were differences 
(F(3,8)=6.565, p=0.0205) and B (ME+T) was 
superior with 1.79±0.32 μg/m³. Overall, the re-
sults confirm that the inclusion of environmental 
covariates can reduce calibration error, although 
their benefit is specific to the pollutant.

DISCUSSION

The results show that the comparison be-
tween A–D calibration models is not uniform 
across contaminants or platforms. For CO, ANO-
VA detected overall differences in ME1 and ME2 

Figure 16. 95% prediction interval for Model D (ME, T, and RH) with T and RH fixed at their medians. Line: 
prediction; shading: 95% prediction interval, reflecting the expected variability of new observations (wider than 

the confidence band)

Table 7. ANOVA statistical comparison

Contaminante Plataforma ANOVA p Mejor modelo (MAE_
mean ± DE)

CO ME1 F(3.8) = 76.31 6.16e-06 C (77.61 ± 11.96)

CO ME2 F(3.8) = 26.44 0.000298 C (138.09 ± 28.64)

CO2 ME1 F(3.12) = 25.56 1.69e-05 D (29.42 ± 6.14)

CO2 ME2 F(3.12) = 18.7 8.09e-05 A (28.70 ± 5.35)

PM25 ME1 F(3.8) = 0.447 0.654 A (1.31 ± 0.24)

PM25 ME2 F(3.8) = 6.565 0.0205 B (1.79 ± 0.32)
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(p≪0.001), and Model C (ME+RH) performed 
best; this suggests cross-sensitivity to humidity 
in electrochemical CO measurement and sup-
ports the inclusion of RH as a corrective covari-
ate. For CO₂, there were significant differences, 
but the winning model depended on the sensor: in 
ME1, Model D (ME+T+RH) obtained the lowest 
MAE, while in ME2, A (ME only) was sufficient, 
pointing to different designs/firmware or thermal 
response between platforms; adding T and RH 
does not always help when the electronics already 
partially compensate for these effects. In PM₂.₅, 
ME1 showed no significant differences between 
models, indicating that the base form (A) captures 
variability well; in ME2, B (ME+T) outperformed 
the others, probably because air density/tempera-
ture slightly influences the optical response of the 
ME2 channel. These conclusions are supported 
by the reported fit statistics (MAE and R²) and by 
the ANOVA by pollutant/platform, which identi-
fies the model with the lowest average error.

From a practical perspective, the benefit of 
adding covariates was moderate for PM₂.₅ and 
CO₂ and clearer for CO; therefore, specific model 
selection is recommended for each pollutant and 
platform: D or B should be used when RH/T pro-
vide systematic error reduction, and A should be 
retained when the gain is marginal (avoiding over-
fitting and unnecessary complexity). The 95% 
confidence bands in the scatter plots visually con-
firm the consistency of the fit around the straight 
line and help identify areas of greater uncertainty.

Limitations and future work. The study was 
conducted at a single site and over a short period, 
which limits seasonal and spatial generalization; in 
addition, there may be uncaptured drifts. As a next 
step, the following are suggested: (i) replicating at 
multiple sites and seasons, (ii) extending the cam-
paign to capture broad meteorological variability, 
(iii) comparing with nonlinear models (e.g., ran-
dom forests, boosting, neural networks) as an ad-
ditional baseline, and (iv) publishing calibration 
equations and scripts to promote reproducibility.
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