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ABSTRACT

Significant environmental and climatic challenges are being faced worldwide due to increasing urbanization, ex-
tensive traffic and industrial development. The rising levels of vehicular emissions and industrial waste have led
to concerning levels of air pollution, which significantly impact public health, including respiratory conditions.
Given that air pollutants are often imperceptible to the naked eye, there is a critical need for an efficient and reli-
able monitoring system to assess air quality in real-time. To contribute to the efforts being performed for mitigat-
ing pollution drastic consequences, the current paper focuses on the following primary objectives. First, design
and implement a cost-effective loT-enabled air quality monitoring system. Second, establish a reliable wireless
sensor network using long-range (LoRa) technology for extended coverage. Third, develop an interface for data
visualization in real time, and finally, validate the system’s effectiveness in both indoor and outdoor environments
over crowded areas. This research presents several novel contributions, including the integration of low-cost sen-
sors with LoRa technology for enhanced range and reliability, the development of an energy-efficient monitoring
solution, and the implementation of a scalable architecture suitable for dense urban environments. The system
comprises multiple sensor nodes, each equipped with a microcontroller, LoRa communication module, and an ar-
ray of environmental sensors that measure key parameters including temperature, humidity, air quality index, par-
ticulate matter, and harmful gas concentrations. These smart nodes transmit data to an [oT platform (Thing Speak),
which processes and shows them through an intuitive, user-friendly dashboard featuring real-time visualization of
air quality metrics. Although this study is an early-stage investigation of the feasibility of the expected monitor-
ing system, its initial deployment in crowded city (Jeddah, Saudi Arabia) results indicate reliable performance in
various environmental conditions, making it a promising solution for urban air quality monitoring. This research
contributes to the development of sustainable smart city infrastructure and public health management systems in
Jeddah and may be extended to larger urban environments, while offering a cost-effective alternative to existing
expensive monitoring solutions. The system’s adaptability and scalability make it especially valuable for develop-
ing regions seeking to implement comprehensive environmental monitoring systems..
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INTRODUCTION

Air pollution is known to be one of the leading
causes of death and respiratory diseases world-
wide [1]. Therefore, environmental and health-
care authorities as well as people at the commu-
nity level, are asked to implement efficient mea-
sures to mitigate the spread of pollution and to
limit the concentration of dangerous pollutants in
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the atmosphere. Efficient monitoring and assess-
ment of pollution indicators is the primary step
in a mitigation process, since the dynamics of air
pollution should be carefully understood. Tradi-
tionally, air pollution monitoring was taken into
account by environmental authorities by estab-
lishing a few stations equipped with high-quality
sensor technologies to obtain precise pollutant
concentrations. Although their reasonable relative
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accuracy, these conventional stations are huge,
inflexible, and expensive to deploy on a commu-
nity scale. In addition, traditional stations are usu-
ally installed in remote locations, which can make
their maintenance and calibration a challenging
task. In general, the existence of a few stations
installed throughout large urban areas makes it
difficult to assess pollution levels with fine spa-
tial and time granularity. Moreover, traditional air
quality monitoring systems are facing the prob-
lem of storage space since they are programmed
to continuously record pollution and climatic,
data even in the case of non-significant changes
in the collected values [2, 3]. These inherent limi-
tations have created an urgent need for affordable
real-time monitoring solutions that can offer gran-
ular time-space measurements of air quality while
being cost-efficient and scalable. The emergence
of Internet of Things (IoT) [4, 5] and long-range
(LoRa) technologies has offered an opportunity
to overcome the previous challenges by enabling
the development of affordable, long-range, and
energy-efficient monitoring systems suitable for
urban and developing regions. In the air pollution
monitoring field, the research gap lies in the lack
of cost-effective, scalable systems that integrate
low-cost sensors with long-range communication
technologies to offer real-time, neighborhood-
level air quality monitoring. As a contribution
to address this research gap, this study proposes
an loT-based air quality monitoring system le-
veraging LoRa technology, which combines af-
fordability, extended coverage, and user-friendly
real-time visualization. The main novelties of the
present study include a comprehensive approach
integrating diverse environmental sensors, ener-
gy-efficient design, and scalability for both in-
door and outdoor applications. Scalability is a
key consideration in the design of our monitor-
ing system. Leveraging LoRa technology, which
supports long-range communication with low
power consumption, enables the deployment of a
large number of sensor nodes distributed across
urban areas without the need for extensive infra-
structure. The modular architecture allows addi-
tional sensor nodes to be integrated seamlessly,
facilitating expansion to cover larger geographic
regions or higher spatial resolution as needed.
While the current prototype utilizes two nodes
for initial validation, the system is architected to
accommodate tens or even hundreds of nodes by
employing LoRaWAN’s capability for managing
multiple devices through adaptive data rate, duty

cycle management, and network server coordina-
tion. In addition, this study investigates recent ad-
vancements in air pollution monitoring systems
by lever- aging various sensors, microcontrollers,
and communication technologies to enhance the
accuracy, accessibility, and cost- effectiveness of
environmental monitoring. The integration of [oT
with low-cost sensors and microcontrollers like
Arduino, ESP8266, and ESP32 has been pivot-
al in developing efficient air quality monitoring
systems.

BACKGROUND

During the previous few years, the design and
implementation of air pollution monitoring sys-
tems have interested researchers and environmen-
tal issues practitioners worldwide. Several aspects
including the used technologies, the targeted air
pollution indicators, the used sensors and micro-
controllers, were considered. Although differ-
ent scales of monitoring accuracy were reached,
the designed systems didn’t cover all the aspects
mainly the time and space scales. For instance, this
section provides a review of some recent related
works concerning air pollution monitoring and fo-
cuses on the above-cited aspects in order to later
well-situate the contributions of the current paper.
For instance, in [6], the authors have used wire-
less sensor network (WSN) technology to create
a self-sustaining air quality monitor for usage in
metropolitan settings, with only two sensors to de-
tect carbon monoxide (CO) and particulate matter
(PM). The main limitation of this study lies on the
fact that other important pollutants were disregard-
ed although they are dangerous for human health.
Reference [7] included a real-time standalone air
quality monitoring system reported to be able to
address a variety of parameters, including PM,
CO, CO,, temperature, humidity, and air pressure.
In this study again, dangerous pollutants such as
PM,; and NO, were not considered. Moreover, be-
cause the sensor node was wired to the gateway,
the system was constrained in terms of complexity
and the use of new wireless technologies. Using
the NodeMCU microcontroller, paper [8] present-
ed a standard solution based on IoT technology.
Pollutant gases (CO and NO,), as well as tempera-
ture and humidity, were the main emphasis, how-
ever PM were overlooked. Wi-Fi, a short-range
wireless communication technology, was used for
sending data. With the improvement of wireless
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sensing, new study fields on smartphone-based
air pollution monitoring have arisen [9]. In [10],
the authors created the first sensing framework
for high-volume corridor deployment on public
transportation infrastructure such as buses. Many
of the applications have benefited from dust or PM
sensors, however low-cost sensors produced erro-
neous and inaccurate results, especially when tem-
perature and humidity values are subject to fluc-
tuations. In addition, sensors would frequently fail
to properly capture data and give the timestamps
needed to synchronize data collection. Most of
these studies have the limitation of collecting data
over long periods of time in stationary environ-
ments [11]. Under such conditions, the monitor-
ing operation covers the unique locations where
the stations are deployed. However, the dynam-
ics of air pollution are rapidly changing even at
nearby locations. Therefore, Wired stationary sen-
sors could be ineffective for remote monitoring.
Furthermore, verifying the effectiveness of those
devices in an indoor context is insufficient. Papers
[12] and [13] used Raspberry Pi operating almost
40 times faster than Arduino in terms of clock
speed. However, Pi as powerful hardware requires
a continuous power supply reflecting difficulty in
its operation for long periods of time with suffi-
cient amounts of energy. Paper [14] has used the
Arduino Uno microcontroller and six sensors,
namely, gas sensors (MQ135, MQ136, MQ9, and
MiCS4514), a temperature and humidity sensor
(DHT11), and a dust sensor. It used also one of
the most recent LPWAN (low-power wide area
network) technologies for data transfer and com-
munication, namely, LoRa for the physical layer
and LoRaWAN for the Medium Access Control
layer. The main limitation of this work is the high
cost of the LoRa gateway used. Existing research
on air pollution surveillance systems exhibits sig-
nificant limitations. For example, while systems
such as [6-8] effectively measure a subset of air
quality parameters, they lack holistic integration
of key variables such as particulate matter, harm-
ful gases, and humidity. Further- more, most rely
on short-range communication technologies like
Wi Fi, limiting their scalability in urban contexts.
In contrast, LoRa-based solutions [ 14] address the
range issue but are constrained by high gateway
costs. Finally, the studies referenced in [15-18]
primarily concentrated on the analytical aspects of
air pollution data rather than the practical imple-
mentation of hardware for monitoring systems.
These works delve into advanced data analysis
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methods, comprising machine learning algorithms
and statistical models, to interpret air quality mea-
surements and predict pollution levels. While their
contributions to understanding pollution dynam-
ics and enhancing predictive capabilities are sig-
nificant, they often overlook the hardware compo-
nent necessary for real-time data acquisition and
monitoring. Consequently, these studies highlight
a critical gap in the research landscape, empha-
sizing the need for integrated systems that com-
bine robust data analysis with effective hardware
deployment to create comprehensive air quality
monitoring solutions. To contribute in filling the
above-cited research gaps, this study presents a
novel approach for monitoring climatic and envi-
ronmental indicators in crowded urban areas us-
ing an integrated internet of things (IoT) and WSN
framework. The main contributions include the
design and deployment of cost-effective, scalable
sensor node architecture; the implementation of a
real-time data acquisition and transmission sys-
tem; and the development of visualization tools to
display air quality and environmental conditions
in real-time which may support decision-making
in the field of pollution control and management.
More explicitly, the current research builds on the
previous efforts by integrating low-cost sensors
with LoRa, offering a versatile, energy-efficient,
and affordable solution, thus filling a critical gap
in the current landscape of air quality monitoring
technologies. Table 1 below provides a compara-
tive summary of the different air quality monitor-
ing systems discussed above and highlights some
key design choices made in each of the systems.
To clarify, dust in our system represents PM2.5
levels, as measured by the Optical Dust Sensor
(GP2Y1010AUOF), which detects fine particulate
matter in the air. Smoke is the reading obtained
from the MQ-2 gas sensor, which is designed to
detect combustible gases, including smoke parti-
cles. Pollution refers to the air quality index (AQI)
measurement derived from the MQ135 sensor,
which detects harmful gases such as ammonia,
sulfur dioxide, benzene, and other volatile organic
substances.

As shown in Table I, compared to previous
works, our system provides a more comprehen-
sive approach, integrating multiple sensor types,
using a low power and long-range communica-
tion protocol and a user-friendly cloud dashboard.
It also supports both indoor and outdoor opera-
tion for a greater range of real-world scenarios
including crowded urban areas. Although several



Journal of Ecological Engineering 2026, 27(2) 178-198

air quality monitoring systems have been pro-
posed in the literature, many suffer from critical
limitations that hinder their scalability and practi-
cal deployment in urban environments. In addi-
tion to relying on high-cost or pollutant-specific
sensors, existing solutions often exhibit limited
communication range, non-availability of internet
connection, high power consumption, and lack of
interoperability between sensor nodes. Many sys-
tems depend on short-range protocols such as Wi-
Fi or Bluetooth, which are unsuitable for wide-
area deployment without extensive infrastructure.
Moreover, real-time data visualization and remote
accessibility are often overlooked, especially in
low-resource or developing regions. These gaps
highlight the need for an energy-efficient, long-
range, and low-cost loT-based monitoring sys-
tem that integrates affordable sensing hardware
with reliable wireless communication protocols
and cloud-based analytics. In this context, our
research presents an innovative approach to en-
vironmental monitoring that takes advantage of
the power of IoT and LoRa technology to create
a robust, scalable and cost-effective solution. By
developing a network of smart sensors capable
of measuring various environmental parameters,
our aim is to provide real-time information on air
quality in urban areas using Jeddah (Saudi Arabia)
as a benchmark, since it involves a diverse urban
landscape with variable air pollution features at
the city level in addition to a high level of crowd

Table 1. Summary of related studies

mainly caused by transportation. The system de-
signed and implemented in this study serves as
an efficient tool for environmental monitoring
and represents a significant step toward creating
smart cities of the future that are sustainable and
health-conscious.

MATERIALS AND METHODS

Methodology

After conducting a comprehensive review of
existing air pollution and environmental monitor-
ing systems, we selected the most suitable com-
ponents for developing a smart air quality moni-
toring solution tailored to urban deployment. The
system’s design incorporated considerations such
as technical performance, cost-efficiency, adapt-
ability, and maintainability. The implementation
process began with the wiring and integration of
the chosen sensors onto an Arduino based micro-
controller, followed by the development of the
corresponding software and communication pro-
tocols. Each hardware and software component
was tested individually to verify its functionality,
with particular attention given to sensor-to-sensor
consistency to enhance measurement accuracy.
Once assembled, the system was programmed
to collect data from four environmental sen-
sors, DHT22, MQ-135, MQ-5, and the GP2Y-
1010AUOF optical dust sensor, and transmit this
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information via LoRa modules to a centralized
gateway. The collected data was processed and
visualized through the Thing Speak loT platform,
which enabled real-time dashboard monitor-
ing and applied smoothing algorithms to reduce
noise measurement. To evaluate system perfor-
mance in real-world conditions, sensor nodes
were deployed in two distinct locations within
Jeddah, Saudi Arabia (AshShati and AlBasatin),
and tested over distances of up to 12—13 km from
the gateway. The system operated reliably across
varied environmental conditions, demonstrating
robust data transmission and monitoring capabili-
ties. The evaluated specific metrics included:

1. Communication range — deploy sensor nodes
at incremental distances from the gateway, up
to 13 kilometers. In our case, as specified in
the LoRa module’s datasheet, the system can
achieve a maximum transmission range of 15
km under optimal conditions.

2. Accuracy of measurements — compare Ssensor
readings to similar sensors co-located at the
same place (referred to as sensor-to-sensor mea-
surement) for parameters such as temperature,
humidity, and air quality index (AQI). An aggre-
gated average value was calculated and adopted.

3. Latency — measure the time delay between data
transmission from the nodes and its visualiza-
tion on the dashboard.

Materials

This section presents an overview of the tools
used during the development of our smart moni-
toring system. The most important electronic
components such as microcontrollers and sensors
are presented. For the two transmitter circuits
(Sensor Nodes), we needed a microcontroller to
operate the system. We selected Arduino Uno be-
cause of its simplicity and efficiency. For com-
munication, we selected LoRa, which is a long
range, low power communication technology.
We also needed sensors for temperature, humid-
ity, dust, smoke, and gas to measure air pollu-
tion and meteorological parameters. Finally, we
selected a breadboard and jumper wires to con-
nect all the components and a battery to provide
the required power. The selection of sensors was
guided by their cost-effectiveness, compatibility
with IoT systems, and suitability for detecting
key air quality parameters. The DHT22 sensor
was chosen for its reliability in measuring tem-
perature and humidity, offering +0.5 °C and +5%
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RH accuracy, respectively. The MQ2 and MQ135
sensors were selected to detect harmful gases due
to their wide detection range and high sensitiv-
ity. The ”GP2Y1010AUOF” Sharp optical dust
sensor, while providing satisfactory accuracy for
particulate matter measurements, has limitations
in distinguishing particle sizes, which may af-
fect the granularity of the data. To mitigate these
limitations, future iterations of the system could
incorporate more advanced sensors with higher
specificity and accuracy.

Overview of LoRa technology

LoRa was chosen according to the compara-
tive analysis shown in the communication tech-
nology spectrum (Figure 1) where LoRa [19]
emerges as the optimal choice for our air qual-
ity monitoring system. The diagram (Figure 1)
clearly illustrates that LoRa occupies a good spot
in the trade-off between range and bandwidth, of-
fering long-range capabilities while maintaining
reduced power usage and cost- effectiveness. Un-
like cellular networks that require higher power
consumption and Wi-Fi that has limited range,
LoRa provides an ideal balance for outdoor en-
vironmental monitoring applications. Although
Bluetooth low energy (BLE) offers energy ef-
ficiency, its short range makes it unsuitable for
city- wide deployment. The mission-critical na-
ture of air quality monitoring requires reliable
long-range communication, and LoRa’s ability to
transmit data over several kilometers while oper-
ating on minimal power makes it particularly well
suited for our sensor network. Furthermore, since
our application does not require high-bandwidth
transmission of video or voice data, but rather fo-
cuses on periodic sensor readings, LoRa’s moder-
ate bandwidth capacity is sufficient, making it a
practical and affordable solution for our system.

System architecture

Figure 2 depicts the overall architecture of
our wireless [oT network for air quality monitor-
ing. The designed system included a LoRa-based
air quality monitoring network implemented in
Jeddah City, Saudi Arabia. The system consists
of two LoRa nodes (as an early-stage prototype)
scattered throughout the area, each equipped
with necessary sensors like the DHT22 for tem-
perature and humidity measurements, MQ2 and
MQI135 for detecting various gases along with
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their concentrations, and a dust sensor for particu-
late matter collection. The data from these nodes
are ransferred to a LoRa gateway, which acts as
bridge, relaying information to a centralized cloud
server. The cloud server’s main role is to process
and analyze the data. The dashboard therefore
provides an intuitive visual representation of air
quality metrics across different locations of the
city. The integration of NodeMCU and LoRa
modules at each node facilitates seamless sender/

receiver communication, highlighting a robust
and scalable network design that is pivotal for ef-
fective environmental monitoring in urban areas.
It should be noted here that this study presents
an early-stage prototype and proof-of-concept
deployment of the monitoring system using two
sensor nodes communicating via LoRa technol-
ogy. Due to resource and budget constraints, a
larger-scale deployment or simulation involving
30-50 sensor nodes was not conducted at this
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stage. The current setup focused on validating
core functionalities and sensor agreement under
real conditions. Future work will include com-
prehensive simulations and field deployments
with a greater number of sensor nodes to evaluate
network scalability, data throughput, and system
robustness in more complex urban environments.

Block diagram

The next step of the system design and im-
plementation consists of the establishment of
the block diagram that represents its workflow
and the relevant units/modules through blocks
(Figure 3).

Circuits

To ensure system operation before investing
in practical implementation, a common practice
in engineering design consists of conducting
extensive simulations of the individual compo-
nents and the whole system. In our study, Fritz-
ing [21] (an open-source software) was used to
verify the circuit design and evaluate its capa-
bilities. To provide a clearer understanding of
the circuit design process, screenshots of the
Fritzing simulations for each circuit (sensor
nodes and gateway) have been included. These
simulations illustrate the wiring and component
connections (Table 2), ensuring that the designs
can be reproduced or further optimized by other
researchers and practitioners.

Figures 4 and Figure 5 incorporate these simu-
lation results, highlighting the layout and func-
tionality of the circuits. The main idea behind
the simulation task is to save time and reduce the
risk of component deterioration during practical
implementation. In our system, we have two sen-
sor nodes which will be located in two different

Table 2. Pinouts of the sensors connection

monitored areas, and one gateway node which
will receive data from both sensor nodes. There-
fore, three circuits for the three units of the sys-
tem were extensively simulated prior to the final
implementation. Figure 4 shows the circuit of one
sensor node. Although a detailed experimental
power consumption analysis was not conducted
due to logistical limitations, energy efficiency was
considered during hardware selection. All com-
ponents, including the microcontroller (ESP32),
LoRa transceiver (SX1278), and environmental
sensors (DHT22, GP2Y1010AUOF), were chosen
based on their low power consumption characteris-
tics as specified in their respective datasheets. Fu-
ture work will include experimental energy profil-
ing under varied operational conditions to validate
these assumptions. The circuit of the gateway node
(the receiver) is shown in Figure 5.

Hardware specifications

The most important electronic components
such as microcontrollers and sensors are shown
in Table 3. Each component was selected to
meet the technical requirements of the system.
The Arduino Uno microcontroller serves as the
central processing unit, offering compatibility
with the LoRa module and sufficient input/out-
put pins to accommodate multiple sensors. The
DHT22 sensor is connected to the analog pin
to capture temperature and humidity readings.
The MQ2 and MQ135 gas sensors are integrat-
ed via analog inputs to detect harmful gases,
while the optical dust sensor is wired to the dig-
ital input for particulate matter detection. The
LoRa module connects to the microcontroller’s
universal asynchronous receiver / transmitter
(UART) pins, facilitating long-range wireless
communication. Power is supplied through a

Sensor Sensor Pin Name Arduino Uno Pin Components/ Notes
VCC 5V Power supply
DHT22 (Temp/Humidity) DATA D3 D3 is an analog pin
GND GND Ground connection
LED power
LED ground
LED-Vé_IEI? LED GSI\\I/D LED control via digital pin Analog input. A
Control D7 typical value like 220 uF is connected between
GP2Y1010AUOF (PM) Vo (Signal Output) A0 the sensor output pin (Vo) and ground. Without
VCC 5v this capacitor, the sensor output might be noisy
GND GND and cause erratic or unstable readings. Sensor
power
Signal ground

184




Journal of Ecological Engineering 2026, 27(2) 178-198

LEoRa Receiver
= =
LoRa Wi-Fi

Dashboard

Figure 3. Block diagram

Optical Dust Sensor

O e

Capacitor 220 uF H
i

............

Figure 4. Fritzing simulation and wiring diagram for Sensor Node, showing connections for the DHT22, MQ2,
MQ135, and dust sensors integrated with the LoRa module and Arduino Uno

9V battery with a voltage regulator to ensure
stable operation. The gateway node, which
features a LoRa receiver module, is designed
to aggregate data and transmit it to the cloud
platform, ensuring efficient integration with the
monitoring system.

Software specifications

Table 4 summarizes the main characteristics
of the software tools utilized in this research pa-
per, along with their references.

Sensor readings

In this paper, sensor to sensor measurement,
often referred to as “inter sensor” or “’cross mea-
surement”, is an alternative technique used when
high precision reference instruments for sensor
calibration are unavailable or impractical due
to cost or logistical constraints. This approach
involves deploying multiple low-cost sensors,
ideally of the same model and with similar base-
line accuracy to measure the same environmen-
tal parameter (such as temperature, humidity,
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Table 3. Main characteristics of selected electronic components

Component

Main Characteristics

MQ2 [22]

Gas sensor designed to detect LPG, smoke, alcohol, propane, hydrogen, methane, and
carbon monoxide. It features fast response and recovery times, with adjustable sensitivity,
ideal for gas leakage detection systems.

MQ135 [23]
DHT22 [24]

Gas sensor capable of detecting alcohol, benzene, smoke, and other harmful gases. It offers
high sensitivity and stability, making it suitable for air quality monitoring applications.

A digital temperature and humidity sensor with a calibrated digital signal output. It offers
high reliability and long-term stability, measuring temperature from -40 to 80 °C (0.5 °C
accuracy) and humidity from 0 to 100% RH (+2-5% accuracy).

Optical Dust Sensor
(GP2Y1010AUO Sharp) [25]
monitors.

Measures particulate matter (e.g., PM2.5) in the air usin
and a phototransistor. It detects dust particles as small
voltage output corresponding to dust concentration, useful for air purifiers and air quality

an infrared emitting diode (IRED)
as 0.5 ym, providing analog

LoRa Module (RYLR896) [26]
battery life.

A long-range, low-power wireless communication module operating in the ISM bands (e.g.,
868 MHz, 915 MHz). It enables data transmission over distances up to 15 km in rural areas,
with low data rates, making it suitable for IoT applications requiring extended range and

Arduino Uno [27]

A microcontroller board based on the AT-mega328P, featuring 14 digital /O pins (6
capable of PWM output), 6 analog inputs, a 16 MHz quartz crystal, USB connection, power
jack, and reset button. It operates at 5V and is widely used for prototyping and educational

purposes.

NodeMCU An open-source

(ESP8266) [28]

loT platform
GPIO, PWM, I2C, 1-Wire, and ADC functionalities, operating at 3.3 V. Suitable for loT
applications requiring Wi-Fi connectivity.

integrating the ESP8266 Wi-Fi module. It includes

particulate matter, or gas concentrations) simul-
taneously. By statistically comparing their output
over time, it is possible to detect outliers, quantify
systematic biases, and improve overall measure-
ment reliability through aggregation. A common
strategy is to compute the average (or sometimes
a weighted average if prior sensor performance
is known) of the measurements from the group,
under the assumption that random errors across
individual sensors will cancel out, while true
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environmental signals will reinforce. This tech-
nique can significantly enhance the precision of
a network without relying on expensive reference
instruments. If all sensors share a common sys-
tematic bias, simple averaging will not be correct
for it. Additionally, environmental factors like
temperature or humidity may affect the sensors
differently, especially if slight manufacturing dif-
ferences exist, which can introduce variability not
fully resolved by aggregation alone. The proposed
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Table 4. Main characteristics of utilized software

Software Main Characteristics

Fritzing [21]

License: Open-source.

Purpose: Open-source hardware initiative for designing and prototyping electronics.
Features: Visual breadboard layout, schematic capture, PCB layout, parts library, ability to
document and share prototypes.

Adobe XD [29]

Purpose: Vector-based user experience design tool for web and mobile apps.

Features: Wire-framing, prototyping, user interface design, collaboration tools, integration
with other Adobe products ,responsive resize.

License: Proprietary with free starter plan and subscription options.

to Arduino boards.
Arduino IDE [30]

source.

Purpose: Integrated Development Environment for writing, compiling, and up- loading code

Features: Supports multiple
management, serial monitor for debugging, cross-platform compatibility. License: Open-

program ming languages (C, C++), extensive library

streams in the cloud.
Thing Speak [31]

Purpose: loT analytics platform service for aggregating, visualizing, and analyzing live data

Features: Real-time data collection, MATLAB integration for data analysis, RESTful API for
data access, support MQTT and HTTP protocols.
License: Proprietary with free and paid tiers.

Firebase [32]

Purpose: Platform developed by Google for creating mobile and web applications.
Features: Real-time NoSQL database, authentication, cloud storage, hosting, cloud
functions, analytics, cross-platform sup- port.
License: Proprietary with free and paid tiers.

Visual Studio [33]

Purpose: Integrated Development Environment from Microsoft for developing computer
programs, websites, web apps, web services, and mobile apps.

Features: Code editor supporting IntelliSense, debugger, GUI design tools, sup- ports
multiple programming languages, extensions for additional functionalities. License:
Community (free), Professional, and Enterprise editions.

measurement technique can enhance data quality
in large scale deployments, particularly in projects
focused on spatial variability rather than absolute
accuracy (like in our case study). Since purchas-
ing and maintaining reference-grade instruments
was financially unfeasible, we relied on sensor-
to-sensor measurement to ensure reasonable data
quality. As an illustration of a sensor-to-sensor
measurement in practice, we conducted an urban
environment experiment (Figure 6) by co-locat-
ing two temperature-humidity sensors (DHT22 1
and DHT22 2) and two air quality index sensors
(MQ135 1 and MQI135 2). The sensor network
was deployed alternately indoors and outdoors.
The sensor network was connected to the cloud
using a Wi-Fi ESP32 Arduino microcontroller
and a cloud platform (Thing Speak). As a result,
a total of 1272entries were collected and visual-
ized through the platform channels. For the op-
erational phase, we aggregated the measurements
from each two sensors using simple averaging
techniques, assuming that random errors would
offset each other and the averaged value would
better represent the true parameter. Although the
system could not achieve the absolute accuracy
of a reference-grade monitor, this measurement
strategy significantly improved measurement
consistency, allowed for the detection of relative

pollution/temperature/humidity hotspots, and of-
fered a cost-effective method for air quality and
climatic parameters sensors readings.

The steps of the measurement process can be
summarized as follows. The first step consists of
the outliers’ removal using the Interquartile tech-
nique. The interquartile range (IQR) technique
[34] is a common method for identifying and re-
moving outliers from the pollution and climatic
datasets, namely, the temperature, humidity and
air quality index. This technique operates by cal-
culating the first quartile (Q1) and the third quar-
tile (Q3), which represent the 25th and 75th per-
centiles, respectively. The IQR is the difference
between Q3 and Q1. Outliers are then defined as
any data points that fall below a lower limit or
above an upper limit. By removing these extreme
values, the dataset becomes cleaner and more rep-
resentative of the underlying trend, improving the
reliability of statistical analyses and model per-
formance. The concept of IQR is mathematically
described by the following equations:

Q1 = 25th percentile of the dataset (1)

Q3 = 75th percentile of the dataset (2)

IQR = Q3 — Q1 3)
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Figure 6. Sensors ‘calibration

Outliers = {x | x < ()
O1-1.5 X IQR or x> Q3 + 1.5 x IOR}

By applying this technique, 25 rows from the
collected dataset were removed, and the analysis
was conducted using the remaining 1247 records.
The cleaned dataset is shown in Figure 7.

The second step consists of comparing each
of the two sensors by calculating the correlation
coefficients as well as the linear regression model
for each parameter [35]. The results of this com-
parison are shown in Figure 8. As shown in Figure
8, the correlation coefficients are respectively of 1
(between the two temperature sensors), 0.91 (be-
tween the two humidity sensors) and of 0.84 (be-
tween the two AQI sensors). The three calculated
correlation coefficients suggest a strong similar-
ity between each of the two sensors and a certain
level of stability of the obtained measurements.

In addition, the respective scatter plots show
the distribution of the measurements of each of
the two sensors as being close to the line Y=X
(First bisector) which corresponds to the ideal
similarity. Although the similarity is almost per-
fect in the temperature, it is high for the humidity
and less but always good for the AQI. At the final
step, the adopted measurements were calculated
using the simple aggregation method (aggregat-
ed average) [36]. The plots of respectively, the
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calibrated temperature, humidity, and AQI are
shown in Figure 9.

To evaluate the agreement between the read-
ings of two paired sensors (temperature, humid-
ity and AQI), we use three statistical metrics: root
mean square error (RMSE), mean absolute error
(MAE), and standard deviation (SD). These met-
rics help quantify the consistency and spread be-
tween measurements from two sensors.

Let x, and y, represent the readings from Sen-
sor 1 and Sensor 2 respectively, fori=1, 2,...,n
Root mean square error (RMSE):

RMSE = 6))
Mean absolute error (MAE):
n
1
MAE =;Z|xi =il (6)
i=1

Standard deviation of differences (SD):

SD = / Z (x; — ;) — d) @)

where: d = Z (xi—y) s the Mean of the differ-

ences between paired observations. The
results obtained are summarized in Table 5.

As shown in Table 5, the sensor agreement
metrics provide quantitative insight into the con-
sistency between paired sensors measuring tem-
perature, humidity, and air quality index (AQI).
The temperature sensors exhibit a low root mean
square error (RMSE) of 0.301 °C, mean absolute
error (MAE) of 0.190 °C, and standard deviation
(STD) of 0.286 °C, indicating strong agreement
and precise measurements. Humidity sensors
show slightly higher variability, with an RMSE
0f 1.302%, MAE 0f 0.347%, and STD of 1.292%,
yet the errors remain within acceptable bounds
for typical environmental monitoring. The AQI
sensors display larger discrepancies, with an
RMSE of 173.282 ppm, MAE of 141.504 ppm,
and STD of 121.085 ppm, reflecting greater vari-
ation likely due to sensor sensitivity or environ-
mental heterogeneity. These metrics confirm the
reliability of temperature and humidity sensors
for accurate environmental assessment, while
highlighting the need for further calibration or
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Figure 7.
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Table 5. Main characteristics of selected electronic components — sensor to sensor agreement metrics (RMSE,
MAE, and standard deviation) for temperature, humidity, and AQI measurements

Parameter RMSE MAE Std. Dev

Temperature 0.301 °C 0.190 °C 0.286 °C

Humidity 1.302% 0.347% 1.292%
AQl 173.282 ppm 141.504 ppm 121.085 ppm

data processing to improve AQI sensor agree-
ment. To complement the quantitative agreement
metrics, visual analysis of the sensor data was
conducted through timeseries plots, boxplots,
and histograms. The time-series plots illustrate
the temporal behavior of each sensor pair, show-
ing how measurements evolve over the sampling
period. The temperature sensors exhibit closely
aligned trends, confirming the strong agreement
indicated by low RMSE and MAE values. Hu-
midity sensor readings demonstrate more vari-
ability but maintain consistent relative patterns.
The AQI sensors display greater fluctuations and
occasional spikes, consistent with their higher er-
ror metrics. Boxplots (Figure 10) summarize the
distributions of sensor measurements, highlight-
ing central tendencies, variability, and potential
outliers. Temperature sensor data are tightly
distributed with minimal outliers, supporting
their reliability. Humidity sensors show a wider

spread, reflecting natural environmental changes
and sensor response differences.

The AQI boxplots reveal broader ranges and
outliers, suggesting intermittent high pollutant
levels or sensor noise. Histograms of pairwise
sensor differences (Figure 11) provide insight
into the frequency and magnitude of measure-
ment discrepancies.

Temperature differences cluster tightly
around zero, confirming high inter-sensor con-
sistency. Humidity differences have a moderate
spread with some asymmetry, while AQI dif-
ferences are broadly distributed, reinforcing the
need for enhanced calibration or noise reduc-
tion techniques. The data acquisition campaign
was intentionally designed to alternate between
indoor and outdoor environments in order to in-
troduce variability and test sensor reliability un-
der different conditions. These alterations aimed
to simulate real-world deployment scenarios
where environmental factors such as temperature
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Figure 10. Boxplot visualization of the sensor readings, showing the distribution and variability across
temperature, humidity, and AQI measurements
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of discrepancies across temperature, humidity, and AQI readings

fluctuation, humidity variation, and air pollutant
exposure differ significantly. However, the transi-
tions between indoor and outdoor conditions were
not systematically logged, resulting in a dataset
where measurements from both environments are
interleaved without clear segmentation. This mix-
ture introduces natural variability into the dataset,
particularly evident in the AQI readings, which
exhibit higher error metrics due to more volatile
outdoor pollutant levels and sensor sensitivity to
external disturbances. Despite this, the tempera-
ture and humidity sensors demonstrate relatively
consistent agreement, suggesting their robustness
across different environments. Future studies
will implement systematic labeling of measure-
ment contexts to enable a more precise analysis
of sensor behavior under controlled indoor and
outdoor conditions. While this study focused
on evaluating the consistency between pairs of
identical low-cost sensors, no direct validation
against certified reference-grade equipment was
conducted. This decision was driven by the high
cost and limited accessibility of such instruments,
especially in the context of an early-stage proto-
type and proof-of-concept. The primary goal at
this phase was to develop and demonstrate a func-
tional and scalable sensing system, rather than to
achieve high-precision calibration. Nonetheless,
the sensor agreement metrics (e.g., RMSE, MAE,
and standard deviation), along with the variability

visualizations, offer useful insights into the inter-
nal reliability of the system. Future work will
include a formal validation campaign using lab-
oratory-grade instruments to establish absolute
accuracy and further improve the system’s cali-
bration fidelity.

Prototype

The exterior views of the three circuits and
their locations are shown. Sensor node 1 placed
in AlShati district, sensor node 2 placed in Al-
Basatin district, and the LoORaWAN gateway are
shown in Figure 12. It is important to note that
while the selected sensors, such as the DHT22,
are low-cost and not typically rated for prolonged
industrial outdoor use, all sensing components
in our system were carefully enclosed in weath-
erproof boxes to protect them from direct sun-
light, rain, and other environmental factors. This
protective casing ensured the sensors’ reliable
operation during the testing period. The choice
of hardware was driven by cost constraints and
the goal of developing an early-stage proof-of-
concept prototype. Our primary objective was
to demonstrate the feasibility of integrating
and communicating environmental sensor data
through a scalable and energy-efficient [oT-
based framework. From this perspective, the use
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Figure 12. Sensor Node#1, Sensor Node#2 and Gateway node

of low-cost and readily available components
remains fully appropriate and justified.

Cost analysis

To analyze the cost of our proposed monitor-
ing system, we conducted a detailed comparison
of our system with two selected systems found
in the literature. The detailed comparison is pro-
vided in Table 6.

As can be seen from Table 6, our system dem-
onstrates a cost-effective and integrated approach
to air quality monitoring compared to the other
two referenced systems. It is significantly more af-
fordable than [37] (250 USD) and [38] (166USD,
excluding sensors). Unlike [37], which uses sepa-
rate and partially uncalibrated sensors, our de-
sign directly provides the air quality index (AQI)
through the judiciously selected appropriate sen-
sor (MQ-135), enhancing reliability and reducing
calibration complexity. Compared to [38], which
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employs an indoor-only Dragino LPS8v2 gateway
in an outdoor application, our system features a
flexible gateway setup using two LoRa modules,
one at the sensor node and one at the gateway, al-
lowing for adaptable deployment in various en-
vironments. Furthermore, our integration of Ar-
duino Uno and NodeMCU offers both modularity
and scalability at a reduced cost, making it ideal
for low-budget or proof-of-concept projects while
maintaining core functionality.

RESULTS AND DISCUSSION

In this section, the results of the air pollution
monitoring system tested in Jeddah city (Saudi
Arabia) are presented and commented on. To
validate and test the system, we placed the sensor
nodes in two different arcas (Alshati, Albsatin),
and moved the nodes away from the gateway with
adistance that may reach approximately 12—13 km
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Figure 13. Real-time air quality monitoring dashboard displaying sensor readings from Node#1 (AlShati district)
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Figure 14. Real-time air quality monitoring dashboard displaying sensor readings from Node#1
(AlBasatin district)

to test the connection between the nodes. Figure
13 and Figure 14 show the values that appeared
on the dashboard when searching for AlShati and
AlBasatin at the same time. Figure 13 and Figure
14, which display real-time dashboard outputs for
AlShati and AlBasatin, have been included to val-
idate the system’s data visualization capabilities.
These figures highlight air quality metrics such
as temperature, humidity, levels of particulate
matter and harmful gas concentrations in a user-
friendly format. The dashboards demonstrate

the system’s ability to aggregate and display
data accurately, with dynamic updates reflecting
changes in environmental conditions. This visual
confirmation reinforces the reliability of the sys-
tem’s data collection and presentation. The pro-
posed IoT-based air quality monitoring system
was successfully deployed and evaluated in two
urban locations to validate its functionality and
performance. The system demonstrated excellent
coverage, with LoRa communication effectively
transmitting data over distances of up to 13 km.
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Figure 15. Thing Speak Node#1

This capability ensures robust connectivity, mak-
ing it suitable for widespread urban applications.
The real-time data collected by the sensors were
transmitted to the Thing Speak IoT platform and
visualized on a user-friendly dashboard (Figure
15 and Figure 16). Figure 15 and Figure 16 il-
lustrate the real-time air quality monitoring dash-
board, displaying sensor readings collected from
different environmental parameters. The legend
provides a detailed explanation of each data set,
including temperature, humidity, particulate mat-
ter (PM2.5), and gas concentrations.

The graphical representation enables users to
track the variations in air quality over time, facili-
tating easy interpretation of pollution trends. Al-
though the system provided reliable performance
under optimal conditions, occasional delays in
dashboard updates were observed if the Wi-Fi
signal is relatively weak. The delays observed
in dashboard updates were mainly attributed to
fluctuations in Wi-Fi signal strength and network
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congestion during peak usage periods. These is-
sues affected the transmission of sensor readings
from the gateway to the cloud platform, resulting
in a delay of 5-10 seconds per update. To address
this limitation, potential solutions include the in-
tegration of backup communication protocols,
such as cellular or Ethernet connections, and the
implementation of data buffering at the gateway
level to minimize the impact of temporary con-
nectivity issues. Furthermore, optimizing data
packet size and transmission intervals could fur-
ther reduce latency, ensuring more consistent re-
al-time updates, particularly during peak network
usage. Despite these minor lags, the dash- board
provided clear insights based on which suitable
actions to assess and make decisions on air qual-
ity may be taken by the responsible authorities.
In particular, the system’s affordability, which
is approximately 110 USD (including the sen-
sors, LoRa modules and the Gateway), highlights
its potential as a cost- effective alternative to
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Table 6. Cost-based comparative analysis of our monitoring system with other similar systems

Ref Sensors/Gateway Cost Comment
- Use of separate sensors
Ref[37] CO, NO,, PM10, temperature, and humidity 250 USD without calibration of some of
sensors + LoRaWAN gateway them
NO,, SO,, CO,, CO, PM2.5, temperature, 166 USD (Notincluding the | o =\ teway is desianed
Ref[38] and humidity sensors + LoRaWAN Gateway sensors) [39] the sensors) to og erate ?:1 door. 9
(Dragino LPS8v2 — Indoor LoRaWAN Gateway [39] P '
Price of the gatewa This DIY LoRa
DHT22, Optical Dust Sensor- GP2Y1010AUOF 9 Y gateway (low- cost NodeMCU
(NodeMCU+ Lo Antenna) R
Our system Sharp, MQTS, and MQ.-135 + Lor.a modules was andLoRa rantenna) 3|gn|f|gantly
(sender+receiver)+ Arduino Uno microcontroller . reduces expenses while
50 USD (Prices from a local )
+ NodeMCU offering full control over network
shop) [40] ) ) .
configuration and data routing

traditional monitoring solutions, which are often
expensive. In addition, based on the cost, the de-
signed system may be deployed at larger scales,
including indoor and outdoor applications. The
reliance on low-cost sensors, while advantageous
in terms of affordability, results in a moderate lev-
el of accuracy compared to high-end alternatives.

For further improvement, future iterations could
incorporate advanced calibration techniques or
integrate higher precision sensors to reduce error
margins, particularly for particulate matter detec-
tion. Furthermore, the system’s dependency on
Wi-Fi for data transmission introduces occasional
latency, which could be mitigated by adopting
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Table 7. Comparison of air quality monitoring systems

Feature Proposed system [41] [42] Traditional Station [43]
Cost Low (110 $) Medium High Very high
Communication range 13 km (LoRa) i 1 km (Wi-Fi) 10 km (Cellu- lar) Stationary only
Scalability High Medium Low Low
Real-time wUpdates Yes Yes No Yes

hybrid communication protocols, such as LoRa-
WAN coupled with cellular backup. Enhancing
the robustness of data transmission during peak
network congestion will further solidify its appli-
cability in dense urban environments.

The study highlights the transformative po-
tential of IoT technology in making environ-
mental monitoring easier. Be- yond air quality
monitoring, the architecture of the system could
be adapted to monitor other environmental pa-
rameters, such as water quality or noise pollu-
tion, further contributing to sustainable urban
development. The combination of low-cost sen-
sors, robust communication technology, and
user-friendly data visualization tools positions
this system as a model to address environmen-
tal challenges in developed and developing re-
gions. To further show the contribution of the
system, a detailed comparison with existing air
quality monitoring systems is presented in Ta-
ble 7. This table highlights key aspects such as
sensor integration, communication range, cost,
scalability, and real-time capabilities. Compared
to traditional fixed monitoring stations, the pro-
posed system excels in affordability, scalability,
and versatility, making it suitable for large-scale
deployment. Unlike other loT-based solutions
that rely on short-range communication tech-
nologies, the use of LoRa extends coverage to
13 kilometers, bridging a critical gap for urban
applications. Although this study was presented
as a proof-of-concept to demonstrate the feasi-
bility of deploying an loT-based environmental
monitoring system using LoRa communication
and real-time dashboards, the efficient deploy-
ment of the proposed system requires deeper
experimentation and analysis. While the dash-
boards effectively visualize sensor data, no for-
mal user experience evaluation was conducted
at this stage. Additionally, although LoRa con-
nectivity was functionally confirmed, a detailed
performance analysis, including metrics such as
packet loss, message frequency, signal strength
under varying urban densities, and transmission
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reliability, was beyond the scope of this phase.
These aspects are recognized as critical and are
planned for comprehensive investigation in fu-
ture extended deployments.

CONCLUSIONS

In this paper, an IoT and WSN-based air
quality monitoring system was designed and
implemented practically. The developed system
has demonstrated its effectiveness, affordability,
and scalability in collecting real-time data relat-
ed to air pollution and environmental conditions
in urban crowded areas. The system included
two sensor nodes and a gateway communicat-
ing through LoRa devices. During the design
step, several technical requirements including
power consumption and cost were considered.
The successful application in two distinct areas
of Jeddah city (Saudi Arabia) highlights the sys-
tem’s adaptability and potential for broader ap-
plication. The implemented system has provided
real-time air quality monitoring with an average
delay of less than 10 seconds, covering a range
of up to 13 kilometers. Moreover, the system’s
affordability, with a total cost of approximately
110 USD, positions it as a viable solution for
resource-constrained regions seeking cost-effec-
tive environmental monitoring.
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