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INTRODUCTION

Air pollution is known to be one of the leading 
causes of death and respiratory diseases world-
wide [1]. Therefore, environmental and health-
care authorities as well as people at the commu-
nity level, are asked to implement efficient mea-
sures to mitigate the spread of pollution and to 
limit the concentration of dangerous pollutants in 

the atmosphere. Efficient monitoring and assess-
ment of pollution indicators is the primary step 
in a mitigation process, since the dynamics of air 
pollution should be carefully understood. Tradi-
tionally, air pollution monitoring was taken into 
account by environmental authorities by estab-
lishing a few stations equipped with high-quality 
sensor technologies to obtain precise pollutant 
concentrations. Although their reasonable relative 
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accuracy, these conventional stations are huge, 
inflexible, and expensive to deploy on a commu-
nity scale. In addition, traditional stations are usu-
ally installed in remote locations, which can make 
their maintenance and calibration a challenging 
task. In general, the existence of a few stations 
installed throughout large urban areas makes it 
difficult to assess pollution levels with fine spa-
tial and time granularity. Moreover, traditional air 
quality monitoring systems are facing the prob-
lem of storage space since they are programmed 
to continuously record pollution and climatic, 
data even in the case of non-significant changes 
in the collected values [2, 3]. These inherent limi-
tations have created an urgent need for affordable 
real-time monitoring solutions that can offer gran-
ular time-space measurements of air quality while 
being cost-efficient and scalable. The emergence 
of Internet of Things (IoT) [4, 5] and long-range 
(LoRa) technologies has offered an opportunity 
to overcome the previous challenges by enabling 
the development of affordable, long-range, and 
energy-efficient monitoring systems suitable for 
urban and developing regions. In the air pollution 
monitoring field, the research gap lies in the lack 
of cost-effective, scalable systems that integrate 
low-cost sensors with long-range communication 
technologies to offer real-time, neighborhood-
level air quality monitoring. As a contribution 
to address this research gap, this study proposes 
an IoT-based air quality monitoring system le-
veraging LoRa technology, which combines af-
fordability, extended coverage, and user-friendly 
real-time visualization. The main novelties of the 
present study include a comprehensive approach 
integrating diverse environmental sensors, ener-
gy-efficient design, and scalability for both in-
door and outdoor applications. Scalability is a 
key consideration in the design of our monitor-
ing system. Leveraging LoRa technology, which 
supports long-range communication with low 
power consumption, enables the deployment of a 
large number of sensor nodes distributed across 
urban areas without the need for extensive infra-
structure. The modular architecture allows addi-
tional sensor nodes to be integrated seamlessly, 
facilitating expansion to cover larger geographic 
regions or higher spatial resolution as needed. 
While the current prototype utilizes two nodes 
for initial validation, the system is architected to 
accommodate tens or even hundreds of nodes by 
employing LoRaWAN’s capability for managing 
multiple devices through adaptive data rate, duty 

cycle management, and network server coordina-
tion. In addition, this study investigates recent ad-
vancements in air pollution monitoring systems 
by lever- aging various sensors, microcontrollers, 
and communication technologies to enhance the 
accuracy, accessibility, and cost- effectiveness of 
environmental monitoring. The integration of IoT 
with low-cost sensors and microcontrollers like 
Arduino, ESP8266, and ESP32 has been pivot-
al in developing efficient air quality monitoring 
systems. 

BACKGROUND

During the previous few years, the design and 
implementation of air pollution monitoring sys-
tems have interested researchers and environmen-
tal issues practitioners worldwide. Several aspects 
including the used technologies, the targeted air 
pollution indicators, the used sensors and micro-
controllers, were considered. Although differ-
ent scales of monitoring accuracy were reached, 
the designed systems didn’t cover all the aspects 
mainly the time and space scales. For instance, this 
section provides a review of some recent related 
works concerning air pollution monitoring and fo-
cuses on the above-cited aspects in order to later 
well-situate the contributions of the current paper. 
For instance, in [6], the authors have used wire-
less sensor network (WSN) technology to create 
a self-sustaining air quality monitor for usage in 
metropolitan settings, with only two sensors to de-
tect carbon monoxide (CO) and particulate matter 
(PM). The main limitation of this study lies on the 
fact that other important pollutants were disregard-
ed although they are dangerous for human health. 
Reference [7] included a real-time standalone air 
quality monitoring system reported to be able to 
address a variety of parameters, including PM2.5, 
CO, CO2, temperature, humidity, and air pressure. 
In this study again, dangerous pollutants such as 
PM10 and NO2 were not considered. Moreover, be-
cause the sensor node was wired to the gateway, 
the system was constrained in terms of complexity 
and the use of new wireless technologies. Using 
the NodeMCU microcontroller, paper [8] present-
ed a standard solution based on IoT technology. 
Pollutant gases (CO and NO2), as well as tempera-
ture and humidity, were the main emphasis, how-
ever PM were overlooked. Wi-Fi, a short-range 
wireless communication technology, was used for 
sending data. With the improvement of wireless 
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sensing, new study fields on smartphone-based 
air pollution monitoring have arisen [9]. In [10], 
the authors created the first sensing framework 
for high-volume corridor deployment on public 
transportation infrastructure such as buses. Many 
of the applications have benefited from dust or PM 
sensors, however low-cost sensors produced erro-
neous and inaccurate results, especially when tem-
perature and humidity values are subject to fluc-
tuations. In addition, sensors would frequently fail 
to properly capture data and give the timestamps 
needed to synchronize data collection. Most of 
these studies have the limitation of collecting data 
over long periods of time in stationary environ-
ments [11]. Under such conditions, the monitor-
ing operation covers the unique locations where 
the stations are deployed. However, the dynam-
ics of air pollution are rapidly changing even at 
nearby locations. Therefore, Wired stationary sen-
sors could be ineffective for remote monitoring. 
Furthermore, verifying the effectiveness of those 
devices in an indoor context is insufficient. Papers 
[12] and [13] used Raspberry Pi operating almost 
40 times faster than Arduino in terms of clock 
speed. However, Pi as powerful hardware requires 
a continuous power supply reflecting difficulty in 
its operation for long periods of time with suffi-
cient amounts of energy. Paper [14] has used the 
Arduino Uno microcontroller and six sensors, 
namely, gas sensors (MQ135, MQ136, MQ9, and 
MiCS4514), a temperature and humidity sensor 
(DHT11), and a dust sensor. It used also one of 
the most recent LPWAN (low-power wide area 
network) technologies for data transfer and com-
munication, namely, LoRa for the physical layer 
and LoRaWAN for the Medium Access Control 
layer. The main limitation of this work is the high 
cost of the LoRa gateway used. Existing research 
on air pollution surveillance systems exhibits sig-
nificant limitations. For example, while systems 
such as [6–8] effectively measure a subset of air 
quality parameters, they lack holistic integration 
of key variables such as particulate matter, harm-
ful gases, and humidity. Further- more, most rely 
on short-range communication technologies like 
Wi Fi, limiting their scalability in urban contexts. 
In contrast, LoRa-based solutions [14] address the 
range issue but are constrained by high gateway 
costs. Finally, the studies referenced in [15–18] 
primarily concentrated on the analytical aspects of 
air pollution data rather than the practical imple-
mentation of hardware for monitoring systems. 
These works delve into advanced data analysis 

methods, comprising machine learning algorithms 
and statistical models, to interpret air quality mea-
surements and predict pollution levels. While their 
contributions to understanding pollution dynam-
ics and enhancing predictive capabilities are sig-
nificant, they often overlook the hardware compo-
nent necessary for real-time data acquisition and 
monitoring. Consequently, these studies highlight 
a critical gap in the research landscape, empha-
sizing the need for integrated systems that com-
bine robust data analysis with effective hardware 
deployment to create comprehensive air quality 
monitoring solutions. To contribute in filling the 
above-cited research gaps, this study presents a 
novel approach for monitoring climatic and envi-
ronmental indicators in crowded urban areas us-
ing an integrated internet of things (IoT) and WSN 
framework. The main contributions include the 
design and deployment of cost-effective, scalable 
sensor node architecture; the implementation of a 
real-time data acquisition and transmission sys-
tem; and the development of visualization tools to 
display air quality and environmental conditions 
in real-time which may support decision-making 
in the field of pollution control and management. 
More explicitly, the current research builds on the 
previous efforts by integrating low-cost sensors 
with LoRa, offering a versatile, energy-efficient, 
and affordable solution, thus filling a critical gap 
in the current landscape of air quality monitoring 
technologies. Table 1 below provides a compara-
tive summary of the different air quality monitor-
ing systems discussed above and highlights some 
key design choices made in each of the systems. 
To clarify, dust in our system represents PM2.5 
levels, as measured by the Optical Dust Sensor 
(GP2Y1010AU0F), which detects fine particulate 
matter in the air. Smoke is the reading obtained 
from the MQ-2 gas sensor, which is designed to 
detect combustible gases, including smoke parti-
cles. Pollution refers to the air quality index (AQI) 
measurement derived from the MQ135 sensor, 
which detects harmful gases such as ammonia, 
sulfur dioxide, benzene, and other volatile organic 
substances. 

As shown in Table I, compared to previous 
works, our system provides a more comprehen-
sive approach, integrating multiple sensor types, 
using a low power and long-range communica-
tion protocol and a user-friendly cloud dashboard. 
It also supports both indoor and outdoor opera-
tion for a greater range of real-world scenarios 
including crowded urban areas. Although several 
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air quality monitoring systems have been pro-
posed in the literature, many suffer from critical 
limitations that hinder their scalability and practi-
cal deployment in urban environments. In addi-
tion to relying on high-cost or pollutant-specific 
sensors, existing solutions often exhibit limited 
communication range, non-availability of internet 
connection, high power consumption, and lack of 
interoperability between sensor nodes. Many sys-
tems depend on short-range protocols such as Wi-
Fi or Bluetooth, which are unsuitable for wide-
area deployment without extensive infrastructure. 
Moreover, real-time data visualization and remote 
accessibility are often overlooked, especially in 
low-resource or developing regions. These gaps 
highlight the need for an energy-efficient, long-
range, and low-cost IoT-based monitoring sys-
tem that integrates affordable sensing hardware 
with reliable wireless communication protocols 
and cloud-based analytics. In this context, our 
research presents an innovative approach to en-
vironmental monitoring that takes advantage of 
the power of IoT and LoRa technology to create 
a robust, scalable and cost-effective solution. By 
developing a network of smart sensors capable 
of measuring various environmental parameters, 
our aim is to provide real-time information on air 
quality in urban areas using Jeddah (Saudi Arabia) 
as a benchmark, since it involves a diverse urban 
landscape with variable air pollution features at 
the city level in addition to a high level of crowd 

mainly caused by transportation. The system de-
signed and implemented in this study serves as 
an efficient tool for environmental monitoring 
and represents a significant step toward creating 
smart cities of the future that are sustainable and 
health-conscious.

MATERIALS AND METHODS

Methodology

After conducting a comprehensive review of 
existing air pollution and environmental monitor-
ing systems, we selected the most suitable com-
ponents for developing a smart air quality moni-
toring solution tailored to urban deployment. The 
system’s design incorporated considerations such 
as technical performance, cost-efficiency, adapt-
ability, and maintainability. The implementation 
process began with the wiring and integration of 
the chosen sensors onto an Arduino based micro-
controller, followed by the development of the 
corresponding software and communication pro-
tocols. Each hardware and software component 
was tested individually to verify its functionality, 
with particular attention given to sensor-to-sensor 
consistency to enhance measurement accuracy. 
Once assembled, the system was programmed 
to collect data from four environmental sen-
sors, DHT22, MQ-135, MQ-5, and the GP2Y-
1010AU0F optical dust sensor, and transmit this 

Table 1. Summary of related studies
Parameter [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] Our 

System 

Temperature 
 

✓ ✓ ✓ ✓ 
 

 ✓ ✓ - - - - ✓ 

Humidity 
 

✓ ✓ ✓ ✓ 
 


 

✓ ✓ - - - - ✓ 

Dust ✓ 
 


 


 

✓ ✓ ✓ 
 

✓ - - - - ✓ 

Harmful gazes 
 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - - - - ✓ 

Smoke 
 


 


 


 

✓ 
 


 


 


 

- - - - ✓ 

AQI 
 


 


 


 


 


 

✓ 
 

✓ - - - - ✓ 

Arduino 
 


 


 

✓ ✓ 
 


 

✓ ✓ - - - - ✓ 

NodeMCU ✓ ✓ ✓ 
 


 


 


 


 


 

- - - - ✓ 

Raspberry ✓ 
 


 


 


 


 

✓ 
 


 

- - - - ✓ 

Wi-Fi ✓ ✓ ✓ 
 


 


 


 

✓ ×
 

- - - - ✓ 

Lora 
 


 


 

✓ ✓ ✓ ✓ ×
 

 - - - - ✓ 

Dashboard 
 

✓ ✓ 
 


 

✓ 
 

✓ ✓ - - - - ✓ 

Forecasting 
 


 


 


 


 

×
 


 


 


 

✓ ✓ ✓ ✓ 
 

Indoor ✓ ✓ ✓ ✓ ×
 

✓ 
 

✓  - - - - ✓ 

Outdoor 
 


 


 


 

✓ 
 

✓ 
 

✓ - - - - ✓ 
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information via LoRa modules to a centralized 
gateway. The collected data was processed and 
visualized through the Thing Speak IoT platform, 
which enabled real-time dashboard monitor-
ing and applied smoothing algorithms to reduce 
noise measurement. To evaluate system perfor-
mance in real-world conditions, sensor nodes 
were deployed in two distinct locations within 
Jeddah, Saudi Arabia (AshShati and AlBasatin), 
and tested over distances of up to 12–13 km from 
the gateway. The system operated reliably across 
varied environmental conditions, demonstrating 
robust data transmission and monitoring capabili-
ties. The evaluated specific metrics included:
1.	Communication range – deploy sensor nodes 

at incremental distances from the gateway, up 
to 13 kilometers. In our case, as specified in 
the LoRa module’s datasheet, the system can 
achieve a maximum transmission range of 15 
km under optimal conditions.

2.	Accuracy of measurements – compare sensor 
readings to similar sensors co-located at the 
same place (referred to as sensor-to-sensor mea-
surement) for parameters such as temperature, 
humidity, and air quality index (AQI). An aggre-
gated average value was calculated and adopted.

3.	Latency – measure the time delay between data 
transmission from the nodes and its visualiza-
tion on the dashboard.

Materials

This section presents an overview of the tools 
used during the development of our smart moni-
toring system. The most important electronic 
components such as microcontrollers and sensors 
are presented. For the two transmitter circuits 
(Sensor Nodes), we needed a microcontroller to 
operate the system. We selected Arduino Uno be-
cause of its simplicity and efficiency. For com-
munication, we selected LoRa, which is a long 
range, low power communication technology. 
We also needed sensors for temperature, humid-
ity, dust, smoke, and gas to measure air pollu-
tion and meteorological parameters. Finally, we 
selected a breadboard and jumper wires to con-
nect all the components and a battery to provide 
the required power. The selection of sensors was 
guided by their cost-effectiveness, compatibility 
with IoT systems, and suitability for detecting 
key air quality parameters. The DHT22 sensor 
was chosen for its reliability in measuring tem-
perature and humidity, offering ±0.5 °C and ±5% 

RH accuracy, respectively. The MQ2 and MQ135 
sensors were selected to detect harmful gases due 
to their wide detection range and high sensitiv-
ity. The ”GP2Y1010AU0F” Sharp optical dust 
sensor, while providing satisfactory accuracy for 
particulate matter measurements, has limitations 
in distinguishing particle sizes, which may af-
fect the granularity of the data. To mitigate these 
limitations, future iterations of the system could 
incorporate more advanced sensors with higher 
specificity and accuracy.

Overview of LoRa technology

LoRa was chosen according to the compara-
tive analysis shown in the communication tech-
nology spectrum (Figure 1) where LoRa [19] 
emerges as the optimal choice for our air qual-
ity monitoring system. The diagram (Figure 1) 
clearly illustrates that LoRa occupies a good spot 
in the trade-off between range and bandwidth, of-
fering long-range capabilities while maintaining 
reduced power usage and cost- effectiveness. Un-
like cellular networks that require higher power 
consumption and Wi-Fi that has limited range, 
LoRa provides an ideal balance for outdoor en-
vironmental monitoring applications. Although 
Bluetooth low energy (BLE) offers energy ef-
ficiency, its short range makes it unsuitable for 
city- wide deployment. The mission-critical na-
ture of air quality monitoring requires reliable 
long-range communication, and LoRa’s ability to 
transmit data over several kilometers while oper-
ating on minimal power makes it particularly well 
suited for our sensor network. Furthermore, since 
our application does not require high-bandwidth 
transmission of video or voice data, but rather fo-
cuses on periodic sensor readings, LoRa’s moder-
ate bandwidth capacity is sufficient, making it a 
practical and affordable solution for our system.

System architecture

Figure 2 depicts the overall architecture of 
our wireless IoT network for air quality monitor-
ing. The designed system included a LoRa-based 
air quality monitoring network implemented in 
Jeddah City, Saudi Arabia. The system consists 
of two LoRa nodes (as an early-stage prototype) 
scattered throughout the area, each equipped 
with necessary sensors like the DHT22 for tem-
perature and humidity measurements, MQ2 and 
MQ135 for detecting various gases along with 
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their concentrations, and a dust sensor for particu-
late matter collection. The data from these nodes 
are ransferred to a LoRa gateway, which acts as 
bridge, relaying information to a centralized cloud 
server. The cloud server’s main role is to process 
and analyze the data. The dashboard therefore 
provides an intuitive visual representation of air 
quality metrics across different locations of the 
city. The integration of NodeMCU and LoRa 
modules at each node facilitates seamless sender/

receiver communication, highlighting a robust 
and scalable network design that is pivotal for ef-
fective environmental monitoring in urban areas. 
It should be noted here that this study presents 
an early-stage prototype and proof-of-concept 
deployment of the monitoring system using two 
sensor nodes communicating via LoRa technol-
ogy. Due to resource and budget constraints, a 
larger-scale deployment or simulation involving 
30–50 sensor nodes was not conducted at this 

Figure 1. Comparison between different Communication technologies [20] 

Figure 2. The overall system architecture 
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stage. The current setup focused on validating 
core functionalities and sensor agreement under 
real conditions. Future work will include com-
prehensive simulations and field deployments 
with a greater number of sensor nodes to evaluate 
network scalability, data throughput, and system 
robustness in more complex urban environments.

Block diagram

The next step of the system design and im-
plementation consists of the establishment of 
the block diagram that represents its workflow 
and the relevant units/modules through blocks 
(Figure 3).

Circuits

To ensure system operation before investing 
in practical implementation, a common practice 
in engineering design consists of conducting 
extensive simulations of the individual compo-
nents and the whole system. In our study, Fritz-
ing [21] (an open-source software) was used to 
verify the circuit design and evaluate its capa-
bilities. To provide a clearer understanding of 
the circuit design process, screenshots of the 
Fritzing simulations for each circuit (sensor 
nodes and gateway) have been included. These 
simulations illustrate the wiring and component 
connections (Table 2), ensuring that the designs 
can be reproduced or further optimized by other 
researchers and practitioners. 

Figures 4 and Figure 5 incorporate these simu-
lation results, highlighting the layout and func-
tionality of the circuits. The main idea behind 
the simulation task is to save time and reduce the 
risk of component deterioration during practical 
implementation. In our system, we have two sen-
sor nodes which will be located in two different 

monitored areas, and one gateway node which 
will receive data from both sensor nodes. There-
fore, three circuits for the three units of the sys-
tem were extensively simulated prior to the final 
implementation. Figure 4 shows the circuit of one 
sensor node. Although a detailed experimental 
power consumption analysis was not conducted 
due to logistical limitations, energy efficiency was 
considered during hardware selection. All com-
ponents, including the microcontroller (ESP32), 
LoRa transceiver (SX1278), and environmental 
sensors (DHT22, GP2Y1010AU0F), were chosen 
based on their low power consumption characteris-
tics as specified in their respective datasheets. Fu-
ture work will include experimental energy profil-
ing under varied operational conditions to validate 
these assumptions. The circuit of the gateway node 
(the receiver) is shown in Figure 5.

Hardware specifications

The most important electronic components 
such as microcontrollers and sensors are shown 
in Table 3. Each component was selected to 
meet the technical requirements of the system. 
The Arduino Uno microcontroller serves as the 
central processing unit, offering compatibility 
with the LoRa module and sufficient input/out-
put pins to accommodate multiple sensors. The 
DHT22 sensor is connected to the analog pin 
to capture temperature and humidity readings. 
The MQ2 and MQ135 gas sensors are integrat-
ed via analog inputs to detect harmful gases, 
while the optical dust sensor is wired to the dig-
ital input for particulate matter detection. The 
LoRa module connects to the microcontroller’s 
universal asynchronous receiver / transmitter 
(UART) pins, facilitating long-range wireless 
communication. Power is supplied through a 

Table 2. Pinouts of the sensors connection
Sensor Sensor Pin Name Arduino Uno Pin Components/ Notes

DHT22 (Temp/Humidity)
VCC
DATA
GND

5V
D3

GND

Power supply
D3 is an analog pin
Ground connection

GP2Y1010AU0F (PM)

V-LED
LED- GND LED

Control
Vo (Signal Output)

VCC
GND

5V
GND
D7
A0
5V

GND

LED power
LED ground

LED control via digital pin Analog input. A 
typical value like 220 µF is connected between 
the sensor output pin (Vo) and ground. Without 
this capacitor, the sensor output might be noisy 
and cause erratic or unstable readings. Sensor 

power 
Signal ground
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9V battery with a voltage regulator to ensure 
stable operation. The gateway node, which 
features a LoRa receiver module, is designed 
to aggregate data and transmit it to the cloud 
platform, ensuring efficient integration with the 
monitoring system.

Software specifications

Table 4 summarizes the main characteristics 
of the software tools utilized in this research pa-
per, along with their references.

Sensor readings

In this paper, sensor to sensor measurement, 
often referred to as ”inter sensor” or ”cross mea-
surement”, is an alternative technique used when 
high precision reference instruments for sensor 
calibration are unavailable or impractical due 
to cost or logistical constraints. This approach 
involves deploying multiple low-cost sensors, 
ideally of the same model and with similar base-
line accuracy to measure the same environmen-
tal parameter (such as temperature, humidity, 

Figure 3. Block diagram

Figure 4. Fritzing simulation and wiring diagram for Sensor Node, showing connections for the DHT22, MQ2, 
MQ135, and dust sensors integrated with the LoRa module and Arduino Uno
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particulate matter, or gas concentrations) simul-
taneously. By statistically comparing their output 
over time, it is possible to detect outliers, quantify 
systematic biases, and improve overall measure-
ment reliability through aggregation. A common 
strategy is to compute the average (or sometimes 
a weighted average if prior sensor performance 
is known) of the measurements from the group, 
under the assumption that random errors across 
individual sensors will cancel out, while true 

environmental signals will reinforce. This tech-
nique can significantly enhance the precision of 
a network without relying on expensive reference 
instruments. If all sensors share a common sys-
tematic bias, simple averaging will not be correct 
for it. Additionally, environmental factors like 
temperature or humidity may affect the sensors 
differently, especially if slight manufacturing dif-
ferences exist, which can introduce variability not 
fully resolved by aggregation alone. The proposed 

Figure 5. Fritzing simulation and wiring diagram for the Gateway node, detailing the integration of the LoRa 
receiver module and its connection to the centralized processing unit 

Table 3. Main characteristics of selected electronic components 
Component Main Characteristics

MQ2 [22]
Gas sensor designed to detect LPG, smoke, alcohol, propane, hydrogen, methane, and 
carbon monoxide. It features fast response and recovery times, with adjustable sensitivity, 
ideal for gas leakage detection systems.

MQ135 [23]
DHT22 [24]

Gas sensor capable of detecting alcohol, benzene, smoke, and other harmful gases. It offers 
high sensitivity and stability, making it suitable for air quality monitoring applications.

A digital temperature and humidity sensor with a calibrated digital signal output. It offers 
high reliability and long-term stability, measuring temperature from -40 to 80 °C (±0.5 °C 
accuracy) and humidity from 0 to 100% RH (±2-5% accuracy).

Optical Dust Sensor 
(GP2Y1010AU0 Sharp) [25]

Measures particulate matter (e.g., PM2.5) in the air using an infrared emitting diode (IRED) 
and a phototransistor. It detects dust particles as small Fas 0.5 µm, providing analog 
voltage output corresponding to dust concentration, useful for air purifiers and air quality 
monitors.

LoRa Module (RYLR896) [26]

A long-range, low-power wireless communication module operating in the ISM bands (e.g., 
868 MHz, 915 MHz). It enables data transmission over distances up to 15 km in rural areas, 
with low data rates, making it suitable for IoT applications requiring extended range and 
battery life.

Arduino Uno [27]

A  microcontroller  board  based  on  the  AT- mega328P, featuring 14 digital I/O pins (6 
capable of PWM output), 6 analog inputs, a 16 MHz quartz crystal, USB connection, power 
jack, and reset button. It operates at 5V and is widely used for prototyping and educational 
purposes.

NodeMCU
(ESP8266) [28]

An open-source IoT platform integrating the ESP8266 Wi-Fi module. It includes 
GPIO, PWM, I²C, 1-Wire, and ADC functionalities, operating at 3.3 V. Suitable for IoT 
applications requiring Wi-Fi connectivity.
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measurement technique can enhance data quality 
in large scale deployments, particularly in projects 
focused on spatial variability rather than absolute 
accuracy (like in our case study). Since purchas-
ing and maintaining reference-grade instruments 
was financially unfeasible, we relied on sensor-
to-sensor measurement to ensure reasonable data 
quality. As an illustration of a sensor-to-sensor 
measurement in practice, we conducted an urban 
environment experiment (Figure 6) by co-locat-
ing two temperature-humidity sensors (DHT22 1 
and DHT22 2) and two air quality index sensors 
(MQ135 1 and MQ135 2). The sensor network 
was deployed alternately indoors and outdoors. 
The sensor network was connected to the cloud 
using a Wi-Fi ESP32 Arduino microcontroller 
and a cloud platform (Thing Speak). As a result, 
a total of 1272entries were collected and visual-
ized through the platform channels. For the op-
erational phase, we aggregated the measurements 
from each two sensors using simple averaging 
techniques, assuming that random errors would 
offset each other and the averaged value would 
better represent the true parameter. Although the 
system could not achieve the absolute accuracy 
of a reference-grade monitor, this measurement 
strategy significantly improved measurement 
consistency, allowed for the detection of relative 

pollution/temperature/humidity hotspots, and of-
fered a cost-effective method for air quality and 
climatic parameters sensors readings. 

The steps of the measurement process can be 
summarized as follows. The first step consists of 
the outliers’ removal using the Interquartile tech-
nique. The interquartile range (IQR) technique 
[34] is a common method for identifying and re-
moving outliers from the pollution and climatic 
datasets, namely, the temperature, humidity and 
air quality index. This technique operates by cal-
culating the first quartile (Q1) and the third quar-
tile (Q3), which represent the 25th and 75th per-
centiles, respectively. The IQR is the difference 
between Q3 and Q1. Outliers are then defined as 
any data points that fall below a lower limit or 
above an upper limit. By removing these extreme 
values, the dataset becomes cleaner and more rep-
resentative of the underlying trend, improving the 
reliability of statistical analyses and model per-
formance. The concept of IQR is mathematically 
described by the following equations:
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Table 4. Main characteristics of utilized software
Software Main Characteristics

Fritzing [21]

Purpose: Open-source hardware initiative for designing and prototyping electronics. 
Features: Visual breadboard layout, schematic capture, PCB layout, parts library, ability to 
document and share prototypes.
License: Open-source.

Adobe XD [29]

Purpose: Vector-based user experience design tool for web and mobile apps.
Features: Wire-framing, prototyping, user interface design, collaboration tools, integration 
with other Adobe products ,responsive resize.
License: Proprietary with free starter plan and subscription options.

Arduino IDE [30]

Purpose: Integrated Development Environment for writing, compiling, and up- loading code 
to Arduino boards.
Features: Supports multiple     program ming languages (C, C++), extensive library 
management, serial monitor for debugging, cross-platform compatibility. License: Open-
source.

Thing Speak [31]

Purpose: IoT analytics platform service for aggregating, visualizing, and analyzing live data 
streams in the cloud.
Features: Real-time data collection, MATLAB integration for data analysis, RESTful API for 
data access, support MQTT and HTTP protocols.
License: Proprietary with free and paid tiers.

Firebase [32]

Purpose: Platform developed by Google for creating mobile and web applications. 
Features: Real-time NoSQL database, authentication, cloud storage, hosting, cloud 
functions, analytics, cross-platform sup- port.
License: Proprietary with free and paid tiers.

Visual Studio [33]

Purpose: Integrated Development Environment from Microsoft for developing computer 
programs, websites, web apps, web services, and mobile apps.
Features: Code editor supporting IntelliSense, debugger, GUI design tools, sup- ports 
multiple programming languages, extensions for additional functionalities. License: 
Community (free), Professional, and Enterprise editions.
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	 Outliers = {x | x < 		
Q1−1.5 × IQR or x > Q3 + 1.5 × IQR}	

(4)

By applying this technique, 25 rows from the 
collected dataset were removed, and the analysis 
was conducted using the remaining 1247 records. 
The cleaned dataset is shown in Figure 7. 

The second step consists of comparing each 
of the two sensors by calculating the correlation 
coefficients as well as the linear regression model 
for each parameter [35]. The results of this com-
parison are shown in Figure 8. As shown in Figure 
8, the correlation coefficients are respectively of 1 
(between the two temperature sensors), 0.91 (be-
tween the two humidity sensors) and of 0.84 (be-
tween the two AQI sensors). The three calculated 
correlation coefficients suggest a strong similar-
ity between each of the two sensors and a certain 
level of stability of the obtained measurements. 

In addition, the respective scatter plots show 
the distribution of the measurements of each of 
the two sensors as being close to the line Y=X 
(First bisector) which corresponds to the ideal 
similarity. Although the similarity is almost per-
fect in the temperature, it is high for the humidity 
and less but always good for the AQI. At the final 
step, the adopted measurements were calculated 
using the simple aggregation method (aggregat-
ed average) [36]. The plots of respectively, the 

calibrated temperature, humidity, and AQI are 
shown in Figure 9.

To evaluate the agreement between the read-
ings of two paired sensors (temperature, humid-
ity and AQI), we use three statistical metrics: root 
mean square error (RMSE), mean absolute error 
(MAE), and standard deviation (SD). These met-
rics help quantify the consistency and spread be-
tween measurements from two sensors.

Let xi and yi represent the readings from Sen-
sor 1 and Sensor 2 respectively, for i = 1, 2,..., n.
Root mean square error (RMSE):
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Mean absolute error (MAE):

	

𝑄𝑄1 =  25th 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  
 

𝑄𝑄3 =  75th 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  
 

𝐼𝐼𝐼𝐼𝐼𝐼 =  𝑄𝑄3 −  𝑄𝑄1  
 

Outliers = {x | x < Q1−1.5 × IQR or x > Q3 + 1.5 × IQR}  
 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑛𝑛 ∑(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
  

 
 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛 ∑|𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖|

𝑛𝑛

𝑖𝑖=1
  

 
 

𝑆𝑆𝑆𝑆 = √ 1
𝑛𝑛 − 1 ∑ ((𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖) − 𝑑̅𝑑)

2
      (7)

𝑛𝑛

𝑖𝑖=1
 

 
 
 
 

	 (6)

Standard deviation of differences (SD):
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where:	 𝑑̅𝑑 =  1
𝑛𝑛 ∑ (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)

𝑛𝑛

1
  s the Mean of the differ-

ences between paired observations. The 
results obtained are summarized in Table 5. 

As shown in Table 5, the sensor agreement 
metrics provide quantitative insight into the con-
sistency between paired sensors measuring tem-
perature, humidity, and air quality index (AQI). 
The temperature sensors exhibit a low root mean 
square error (RMSE) of 0.301 °C, mean absolute 
error (MAE) of 0.190 °C, and standard deviation 
(STD) of 0.286 °C, indicating strong agreement 
and precise measurements. Humidity sensors 
show slightly higher variability, with an RMSE 
of 1.302%, MAE of 0.347%, and STD of 1.292%, 
yet the errors remain within acceptable bounds 
for typical environmental monitoring. The AQI 
sensors display larger discrepancies, with an 
RMSE of 173.282 ppm, MAE of 141.504 ppm, 
and STD of 121.085 ppm, reflecting greater vari-
ation likely due to sensor sensitivity or environ-
mental heterogeneity. These metrics confirm the 
reliability of temperature and humidity sensors 
for accurate environmental assessment, while 
highlighting the need for further calibration or 

Figure 6. Sensors ‘calibration
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Figure 7. Time variation of the temperature, humidity, and AQI of each of the two sensors

Figure 8. Correlation and regression analysis of the three parameters

Figure 9. Plots of the aggregated average (three parameters)
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data processing to improve AQI sensor agree-
ment. To complement the quantitative agreement 
metrics, visual analysis of the sensor data was 
conducted through timeseries plots, boxplots, 
and histograms. The time-series plots illustrate 
the temporal behavior of each sensor pair, show-
ing how measurements evolve over the sampling 
period. The temperature sensors exhibit closely 
aligned trends, confirming the strong agreement 
indicated by low RMSE and MAE values. Hu-
midity sensor readings demonstrate more vari-
ability but maintain consistent relative patterns. 
The AQI sensors display greater fluctuations and 
occasional spikes, consistent with their higher er-
ror metrics. Boxplots (Figure 10) summarize the 
distributions of sensor measurements, highlight-
ing central tendencies, variability, and potential 
outliers. Temperature sensor data are tightly 
distributed with minimal outliers, supporting 
their reliability. Humidity sensors show a wider 

spread, reflecting natural environmental changes 
and sensor response differences. 

The AQI boxplots reveal broader ranges and 
outliers, suggesting intermittent high pollutant 
levels or sensor noise. Histograms of pairwise 
sensor differences (Figure 11) provide insight 
into the frequency and magnitude of measure-
ment discrepancies. 

Temperature differences cluster tightly 
around zero, confirming high inter-sensor con-
sistency. Humidity differences have a moderate 
spread with some asymmetry, while AQI dif-
ferences are broadly distributed, reinforcing the 
need for enhanced calibration or noise reduc-
tion techniques. The data acquisition campaign 
was intentionally designed to alternate between 
indoor and outdoor environments in order to in-
troduce variability and test sensor reliability un-
der different conditions. These alterations aimed 
to simulate real-world deployment scenarios 
where environmental factors such as temperature 

Figure 10. Boxplot visualization of the sensor readings, showing the distribution and variability across 
temperature, humidity, and AQI measurements

Table 5. Main characteristics of selected electronic components – sensor to sensor agreement metrics (RMSE, 
MAE, and standard deviation) for temperature, humidity, and AQI measurements

Parameter RMSE MAE Std. Dev

Temperature 0.301 °C 0.190 °C 0.286 °C

Humidity 1.302% 0.347% 1.292%

AQI 173.282 ppm 141.504 ppm 121.085 ppm
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fluctuation, humidity variation, and air pollutant 
exposure differ significantly. However, the transi-
tions between indoor and outdoor conditions were 
not systematically logged, resulting in a dataset 
where measurements from both environments are 
interleaved without clear segmentation. This mix-
ture introduces natural variability into the dataset, 
particularly evident in the AQI readings, which 
exhibit higher error metrics due to more volatile 
outdoor pollutant levels and sensor sensitivity to 
external disturbances. Despite this, the tempera-
ture and humidity sensors demonstrate relatively 
consistent agreement, suggesting their robustness 
across different environments. Future studies 
will implement systematic labeling of measure-
ment contexts to enable a more precise analysis 
of sensor behavior under controlled indoor and 
outdoor conditions. While this study focused 
on evaluating the consistency between pairs of 
identical low-cost sensors, no direct validation 
against certified reference-grade equipment was 
conducted. This decision was driven by the high 
cost and limited accessibility of such instruments, 
especially in the context of an early-stage proto-
type and proof-of-concept. The primary goal at 
this phase was to develop and demonstrate a func-
tional and scalable sensing system, rather than to 
achieve high-precision calibration. Nonetheless, 
the sensor agreement metrics (e.g., RMSE, MAE, 
and standard deviation), along with the variability 

visualizations, offer useful insights into the inter-
nal reliability of the system. Future work will 
include a formal validation campaign using lab-
oratory-grade instruments to establish absolute 
accuracy and further improve the system’s cali-
bration fidelity. 

Prototype

The exterior views of the three circuits and 
their locations are shown. Sensor node 1 placed 
in AlShati district, sensor node 2 placed in Al-
Basatin district, and the LoRaWAN gateway are 
shown in Figure 12. It is important to note that 
while the selected sensors, such as the DHT22, 
are low-cost and not typically rated for prolonged 
industrial outdoor use, all sensing components 
in our system were carefully enclosed in weath-
erproof boxes to protect them from direct sun-
light, rain, and other environmental factors. This 
protective casing ensured the sensors’ reliable 
operation during the testing period. The choice 
of hardware was driven by cost constraints and 
the goal of developing an early-stage proof-of-
concept prototype. Our primary objective was 
to demonstrate the feasibility of integrating 
and communicating environmental sensor data 
through a scalable and energy-efficient IoT-
based framework. From this perspective, the use 

Figure 11. Histogram of sensor-to-sensor measurement differences, illustrating the distribution
of discrepancies across temperature, humidity, and AQI readings
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of low-cost and readily available components 
remains fully appropriate and justified.

Cost analysis

To analyze the cost of our proposed monitor-
ing system, we conducted a detailed comparison 
of our system with two selected systems found 
in the literature. The detailed comparison is pro-
vided in Table 6.

As can be seen from Table 6, our system dem-
onstrates a cost-effective and integrated approach 
to air quality monitoring compared to the other 
two referenced systems. It is significantly more af-
fordable than [37] (250 USD) and [38] (166USD, 
excluding sensors). Unlike [37], which uses sepa-
rate and partially uncalibrated sensors, our de-
sign directly provides the air quality index (AQI) 
through the judiciously selected appropriate sen-
sor (MQ-135), enhancing reliability and reducing 
calibration complexity. Compared to [38], which 

employs an indoor-only Dragino LPS8v2 gateway 
in an outdoor application, our system features a 
flexible gateway setup using two LoRa modules, 
one at the sensor node and one at the gateway, al-
lowing for adaptable deployment in various en-
vironments. Furthermore, our integration of Ar-
duino Uno and NodeMCU offers both modularity 
and scalability at a reduced cost, making it ideal 
for low-budget or proof-of-concept projects while 
maintaining core functionality. 

RESULTS AND DISCUSSION

In this section, the results of the air pollution 
monitoring system tested in Jeddah city (Saudi 
Arabia) are presented and commented on. To 
validate and test the system, we placed the sensor 
nodes in two different areas (Alshati, Albsatin), 
and moved the nodes away from the gateway with 
a distance that may reach approximately 12–13 km 

Figure 12. Sensor Node#1, Sensor Node#2 and Gateway node
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to test the connection between the nodes. Figure 
13 and Figure 14 show the values that appeared 
on the dashboard when searching for AlShati and 
AlBasatin at the same time. Figure 13 and Figure 
14, which display real-time dashboard outputs for 
AlShati and AlBasatin, have been included to val-
idate the system’s data visualization capabilities. 
These figures highlight air quality metrics such 
as temperature, humidity, levels of particulate 
matter and harmful gas concentrations in a user-
friendly format. The dashboards demonstrate 

the system’s ability to aggregate and display 
data accurately, with dynamic updates reflecting 
changes in environmental conditions. This visual 
confirmation reinforces the reliability of the sys-
tem’s data collection and presentation. The pro-
posed IoT-based air quality monitoring system 
was successfully deployed and evaluated in two 
urban locations to validate its functionality and 
performance. The system demonstrated excellent 
coverage, with LoRa communication effectively 
transmitting data over distances of up to 13 km. 

Figure 13. Real-time air quality monitoring dashboard displaying sensor readings from Node#1 (AlShati district) 

Figure 14. Real-time air quality monitoring dashboard displaying sensor readings from Node#1
(AlBasatin district) 



194

Journal of Ecological Engineering 2026, 27(2), 178–198

This capability ensures robust connectivity, mak-
ing it suitable for widespread urban applications. 
The real-time data collected by the sensors were 
transmitted to the Thing Speak IoT platform and 
visualized on a user-friendly dashboard (Figure 
15 and Figure 16). Figure 15 and Figure 16 il-
lustrate the real-time air quality monitoring dash-
board, displaying sensor readings collected from 
different environmental parameters. The legend 
provides a detailed explanation of each data set, 
including temperature, humidity, particulate mat-
ter (PM2.5), and gas concentrations.

The graphical representation enables users to 
track the variations in air quality over time, facili-
tating easy interpretation of pollution trends. Al-
though the system provided reliable performance 
under optimal conditions, occasional delays in 
dashboard updates were observed if the Wi-Fi 
signal is relatively weak. The delays observed 
in dashboard updates were mainly attributed to 
fluctuations in Wi-Fi signal strength and network 

congestion during peak usage periods. These is-
sues affected the transmission of sensor readings 
from the gateway to the cloud platform, resulting 
in a delay of 5–10 seconds per update. To address 
this limitation, potential solutions include the in-
tegration of backup communication protocols, 
such as cellular or Ethernet connections, and the 
implementation of data buffering at the gateway 
level to minimize the impact of temporary con-
nectivity issues. Furthermore, optimizing data 
packet size and transmission intervals could fur-
ther reduce latency, ensuring more consistent re-
al-time updates, particularly during peak network 
usage. Despite these minor lags, the dash- board 
provided clear insights based on which suitable 
actions to assess and make decisions on air qual-
ity may be taken by the responsible authorities. 
In particular, the system’s affordability, which 
is approximately 110 USD (including the sen-
sors, LoRa modules and the Gateway), highlights 
its potential as a cost- effective alternative to 

Figure 15. Thing Speak Node#1
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traditional monitoring solutions, which are often 
expensive. In addition, based on the cost, the de-
signed system may be deployed at larger scales, 
including indoor and outdoor applications. The 
reliance on low-cost sensors, while advantageous 
in terms of affordability, results in a moderate lev-
el of accuracy compared to high-end alternatives. 

For further improvement, future iterations could 
incorporate advanced calibration techniques or 
integrate higher precision sensors to reduce error 
margins, particularly for particulate matter detec-
tion. Furthermore, the system’s dependency on 
Wi-Fi for data transmission introduces occasional 
latency, which could be mitigated by adopting 

Figure 16. Thing Speak Node#2

Table 6. Cost-based comparative analysis of our monitoring system with other similar systems
Ref Sensors/Gateway Cost Comment

Ref[37] CO, NO2, PM10, temperature, and humidity 
sensors + LoRaWAN gateway 250 USD

Use of separate sensors 
without calibration of some of 

them

Ref[38]
NO2, SO2, CO2, CO, PM2.5, temperature, 

and humidity sensors + LoRaWAN Gateway 
(Dragino LPS8v2 – Indoor LoRaWAN Gateway

166 USD (Not including the
sensors) [39] the sensors) 

[39]

The used gateway is designed 
to operate indoor.

Our system

DHT22, Optical Dust Sensor- GP2Y1010AU0F 
Sharp, MQ-5, and MQ-135 + Lora modules 

(sender+receiver)+ Arduino Uno microcontroller 
+ NodeMCU

Price of the gateway
(NodeMCU+ Lo Antenna)  

was
50 USD (Prices from a local 

shop) [40]

This DIY LoRa
gateway (low- cost NodeMCU 
andLoRa rantenna) significantly 

reduces expenses while 
offering full control over network 
configuration and data routing
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hybrid communication protocols, such as LoRa-
WAN coupled with cellular backup. Enhancing 
the robustness of data transmission during peak 
network congestion will further solidify its appli-
cability in dense urban environments.

The study highlights the transformative po-
tential of IoT technology in making environ-
mental monitoring easier. Be- yond air quality 
monitoring, the architecture of the system could 
be adapted to monitor other environmental pa-
rameters, such as water quality or noise pollu-
tion, further contributing to sustainable urban 
development. The combination of low-cost sen-
sors, robust communication technology, and 
user-friendly data visualization tools positions 
this system as a model to address environmen-
tal challenges in developed and developing re-
gions. To further show the contribution of the 
system, a detailed comparison with existing air 
quality monitoring systems is presented in Ta-
ble 7. This table highlights key aspects such as 
sensor integration, communication range, cost, 
scalability, and real-time capabilities. Compared 
to traditional fixed monitoring stations, the pro-
posed system excels in affordability, scalability, 
and versatility, making it suitable for large-scale 
deployment. Unlike other IoT-based solutions 
that rely on short-range communication tech-
nologies, the use of LoRa extends coverage to 
13 kilometers, bridging a critical gap for urban 
applications. Although this study was presented 
as a proof-of-concept to demonstrate the feasi-
bility of deploying an IoT-based environmental 
monitoring system using LoRa communication 
and real-time dashboards, the efficient deploy-
ment of the proposed system requires deeper 
experimentation and analysis. While the dash-
boards effectively visualize sensor data, no for-
mal user experience evaluation was conducted 
at this stage. Additionally, although LoRa con-
nectivity was functionally confirmed, a detailed 
performance analysis, including metrics such as 
packet loss, message frequency, signal strength 
under varying urban densities, and transmission 

reliability, was beyond the scope of this phase. 
These aspects are recognized as critical and are 
planned for comprehensive investigation in fu-
ture extended deployments.

CONCLUSIONS

In this paper, an IoT and WSN-based air 
quality monitoring system was designed and 
implemented practically. The developed system 
has demonstrated its effectiveness, affordability, 
and scalability in collecting real-time data relat-
ed to air pollution and environmental conditions 
in urban crowded areas. The system included 
two sensor nodes and a gateway communicat-
ing through LoRa devices. During the design 
step, several technical requirements including 
power consumption and cost were considered. 
The successful application in two distinct areas 
of Jeddah city (Saudi Arabia) highlights the sys-
tem’s adaptability and potential for broader ap-
plication. The implemented system has provided 
real-time air quality monitoring with an average 
delay of less than 10 seconds, covering a range 
of up to 13 kilometers. Moreover, the system’s 
affordability, with a total cost of approximately 
110 USD, positions it as a viable solution for 
resource-constrained regions seeking cost-effec-
tive environmental monitoring. 
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