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INTRODUCTION

With the rapid advancement of urbanization 
and the continuous expansion of the construction 
industry in China, the annual generation of con-
struction waste has been increasing, exerting a 
substantial burden on the ecological environment. 
The resource utilization of construction waste not 
only reduces landfilling and stockpiling but also 
conserves natural resources and mitigates envi-
ronmental pollution, thereby offering significant 
economic and environmental benefits [1,2]. In 

line with China’s commitment to achieving car-
bon neutrality by 2060, carbon sequestration and 
emission reduction have become pressing issues 
across all sectors [3–5]. Due to its large scale and 
high energy consumption, the construction indus-
try has long been a major contributor to global 
CO₂ emissions, accounting for approximately 
30–40% annually [6,7]. Consequently, reducing 
carbon emissions in the construction sector rep-
resents a critical challenge for future sustainable 
development [5]. Against this background, the re-
source utilization of construction and demolition 
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waste not only alleviates the excessive exploita-
tion of natural resources but also promotes the 
low-carbon transformation and green develop-
ment of the construction industry [8–10] .

At present, the resource utilization of con-
struction and demolition waste (CDW) primar-
ily includes recycled coarse aggregate, recycled 
fine aggregate, and a considerable amount of dust 
particles with a particle size of less than 0.075 
mm generated during the recycling process, com-
monly referred to as recycled fine powder [11]. 
This recycled powder accounts for approxi-
mately 10–20% of the total CDW, and its main 
components consist of silica, hydrated products 
such as calcium hydroxide, and unhydrated tri-
calcium silicate [4]. Although it exhibits certain 
pozzolanic activity and is generally used as a 
supplementary cementitious material in cement-
based systems, its relatively low reactivity has 
resulted in limited utilization [12–14]. Compared 
with recycled fine powder, research on recycled 
coarse aggregate has received greater attention. 
Several studies have employed recycled aggre-
gates to prepare recycled concrete [15]. However, 
due to the substantial amount of residual cement 
mortar adhered to the surface of recycled aggre-
gates, these aggregates exhibit high porosity and 
water absorption, which significantly reduce the 
compressive strength, permeability, and other 
durability properties of recycled aggregate con-
crete[16–19]. Hamed Dabiri reported that replac-
ing natural coarse aggregate with recycled coarse 
aggregate (RCA) at substitution levels ranging 
from 10% to 100% led to notable changes in the 
primary mechanical properties of concrete. The 
experimental results showed that, compared with 
control concrete samples, the maximum compres-
sive strength, flexural strength, splitting tensile 
strength, density, and slump decreased by 19.4%, 
18.3%, 19.6%, 19.5%, and 25.0%, respectively 
[20]. To address the inherent drawbacks of RCA, 
such as high porosity and strong water absorp-
tion, several improvement methods have been 
proposed, including carbonation, mechanical 
grinding, immersion treatment, and mineral ad-
mixture activation. Among these, accelerated car-
bonation not only effectively enhances the physi-
cal and mechanical properties of RCA but also 
captures CO₂, thereby contributing to emission 
reduction and promoting the low-carbon develop-
ment of the construction industry [21–23]. Car-
bonation technology has also been widely applied 
to modify other recycled materials. For instance, 

Veronica Viola investigated the carbonation po-
tential of wood ash under different relative hu-
midity, liquid-to-solid ratios, and temperature 
conditions. The results demonstrated that pro-
longed carbonation increased CaCO₃ production, 
decreased porosity, and improved the mechani-
cal performance of samples with higher carbon-
ate content[24]. Previous studies further revealed 
that carbonation of RCA generates CaCO₃, which 
can fill aggregate pores and consequently enhance 
aggregate strength [25,26]. Hanxiong Lyu et al. 
incorporated carbonated glass powder as a par-
tial replacement for ordinary Portland cement to 
prepare sustainable cement pastes. Their findings 
indicated that carbonated glass powder improved 
the sustainability of cementitious materials; al-
though early-age strength was slightly reduced 
due to dilution effects, both long-term strength 
and durability were significantly enhanced[27]. 
Similarly, Bingbing Guo examined seawater sea-
sand concrete subjected to CO₂ curing, focusing 
on its pore structure and uniaxial compressive 
behavior. The results showed that CO₂ curing 
effectively reduced mesopores and micropores, 
leading to a denser pore structure. After 180 days, 
the compressive strength increased by up to 30%; 
however, this was accompanied by an increase in 
elastic modulus and a reduction in peak strain, in-
dicating a tendency toward enhanced brittleness 
[28,29]. Carbonation treatment has been demon-
strated to significantly improve the performance 
of RCA. Antonina Goncharov et al. reported that 
accelerated carbonation induces reactions be-
tween CO₂ and calcium-bearing phases in RCA, 
such as calcium hydroxide and calcium silicate 
hydrate (C-S-H), resulting in the formation of cal-
cium carbonate [30]. This process markedly re-
duces the porosity and water absorption of RCA, 
thereby enhancing its overall quality. In addi-
tion to achieving CO₂ sequestration, carbonation 
treatment also improves the reactivity of recycled 
powders in cementitious systems, reduces envi-
ronmental risks, and promotes the resource utili-
zation of solid waste [26,31]. Ding Yahong inves-
tigated the effects of accelerated carbonation un-
der varying pressure conditions on the macro- and 
micro-properties of RCA. The findings indicated 
that with increasing carbonation pressure, the 
apparent density of RCA increased, while water 
absorption and crushing index decreased expo-
nentially. During the carbonation process, abun-
dant calcite crystals were deposited within pores 
and at interfaces, filling cracks and voids, thereby 
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refining the aggregate structure [32]. Further stud-
ies revealed that recycled concrete prepared with 
carbonated aggregates exhibited a 22.6% increase 
in compressive strength compared with that pro-
duced from untreated RCA. Moreover, its dura-
bility was enhanced, with a 36% improvement in 
resistance to external ion penetration and a 12% 
increase in reinforcement corrosion resistance 
[33-36]. These improvements can be attributed 
to the carbonation of major hydration products 
in the cement paste, such as C-S-H and Ca(OH)₂, 
which generates calcite and highly polymerized 
silica gel [37]. This densification of the micro-
structure significantly enhances the resistance of 
recycled concrete to external ion ingress.

Although carbonation can enhance the perfor-
mance of RCA, its effectiveness is subject to cer-
tain limitations. This is primarily because the ad-
hered mortar on the surface of RAs is limited, and 
as the replacement ratio increases, the overall per-
formance of recycled aggregate concrete (RAC) 
tends to decline. Kaijian Zhang et al. reported that 
the compressive strength of RAC decreased sig-
nificantly with increasing RA content, and when 
the replacement level exceeded 30%, the benefits 
of carbonation were offset by the intrinsic de-
fects of the aggregates[38]. Alessia Cuccurullo 
et al. investigated the carbonation of recycled 
fine aggregates under different relative humidity 
levels and carbonation durations, and evaluated 
their mechanical properties using a triaxial test-
ing machine. The results revealed that carbon-
ation under medium to low humidity yielded the 
most favorable outcomes, with a 30% replace-
ment ratio leading to significant improvements 
in mechanical performance and carbonation re-
sistance[39]. However, under high humidity or at 
higher replacement ratios, increased porosity and 
poor interfacial bonding resulted in deteriorated 
performance. Recycled powder, as a by-product 
of RA processing, is characterized by finer par-
ticle size and larger specific surface area, making 
it a suitable supplementary cementitious material 
in cement-based systems. Compared with RAs, 
recycled powders contain a greater amount of ce-
ment paste particles and exhibit smaller particle 
sizes, thereby offering superior CO₂ sequestration 
potential [41]. Carbonation treatment not only 
mitigates the high porosity of recycled powders 
but also enhances their reactivity. Ding Yahong 
et al. demonstrated that pre-soaking carbon-
ation, as opposed to direct carbonation, increased 
the flexural strength of mortar by 27.85% and 

compressive strength by 20% at a 30% replace-
ment level, while also elevating the Ca/Si ratio, 
thereby facilitating a more complete hydration re-
action and yielding a denser microstructure[32]. 
Moreover, carbonation was found to reduce the 
compositional heterogeneity of recycled pow-
ders, aligning their mineral phases more closely 
with those of Portland cement, which increased 
their activity index [43]. During carbonation, re-
cycled powders can also capture a measurable 
amount of CO₂, with studies indicating that the 
CO₂ uptake per unit of recycled fine powder is ap-
proximately 20% of the CO₂ emissions per unit of 
cement [22]. Furthermore, carbonation alters the 
mineral composition of recycled fine powders, 
and the formation of CaCO₃ provides additional 
nucleation sites for cement hydration, thereby 
promoting hydration processes.

In this study, scanning electron microscopy 
(SEM), X-ray diffraction (XRD), and nuclear 
magnetic resonance (NMR) techniques were em-
ployed to systematically investigate the effects of 
incorporating carbonated recycled fine powder 
on the micro-morphology, pore structure, cement 
hydration kinetics, and total heat evolution of ce-
ment mortars. The hydration kinetics of carbon-
ated recycled fine powder were further examined 
to improve its physical and mechanical proper-
ties and to elucidate its synergistic modification 
effects during carbonation, thereby overcoming 
the limitations of conventional studies that have 
primarily focused on single recycled aggregates. 
This research not only promotes the high-value 
utilization of construction and demolition waste 
but also provides a theoretical basis for enhancing 
the durability of concretes containing carbonated 
recycled fine powder. Furthermore, it enables ef-
fective CO₂ sequestration, aligning with China’s 
“dual-carbon” strategic goals.

MATERIALS AND METHODS

Materials

This study utilized Ordinary Portland Ce-
ment (P.O 42.5) as the binder material, con-
forming to the Chinese standard GB 175-2007. 
The recycled fine powder (RFP) was prepared 
from discarded concrete beams collected in the 
laboratory. These beams were manually broken 
and then subjected to secondary crushing using 
a universal jaw crusher. The resulting material 
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was sieved to obtain particles smaller than 0.16 
mm, which were then placed in a ball mill and 
ground for 30 minutes. Following grinding, the 
matrix was passed through a sieve to isolate 
powder particles smaller than 0.075 mm. Table 
1 summarizes the chemical makeup of both the 
RFP and the cement.

Laboratory-supplied tap water was employed 
for both mixing and curing. ISO standard sand 
was supplied by Xiamen ISO Standard Sand 
Co., Ltd., complying with the Chinese standard 
GB/T 17671.

Carbonation treatment of RFP

The RFP was carbonated using a dry car-
bonation method. An accelerated carbonation 
chamber (Model TMS9015D, manufactured 
by Hangzhou Jiuwen Automation Technology 
Co., Ltd.) was used for the treatment. The car-
bonation conditions were maintained as fol-
lows: CO₂ concentration at 40%, temperature at 
21 °C, and relative humidity at 70%. After 72 
hours of carbonation, the treated powder was 
referred to as carbonated recycled fine powder 
(CRFP). Figure 1 shows the powder morphol-
ogy of CRFPd and RFP.

Figure 2 presents the particle size profiles of 
the powders before and after carbonation. Based 
on laser diffraction analysis, the D₅₀ values 
were 9.895 μm for Portland cement, 3.892 μm 
for RFP, and 14.590 μm for CRFP. The RFP 

exhibited a finer grain size than cement, whereas 
the CRFP displayed a distribution pattern closely 
resembling that of cement. The observed parti-
cle coarsening post-carbonation is primarily as-
cribed to the accumulation of reaction products 
on powder surfaces.

Mix proportion design

Cement mortar specimens were prepared in 
accordance with GB/T 17671-2021, “Test Meth-
od for Strength of Cement Mortar (ISO Method)”, 
by partially replacing cement with RFP and CRFP 
at substitution levels of 10%, 20%, and 30% by 
mass. Table 2 outlines the specific mixture com-
positions used in this study.

Specimen preparation

According to the designed mix proportions, 
cement mortar was prepared using a mortar mix-
er. The fresh mortar was cast into prismatic molds 
of 40 × 40 × 160 mm in two layers, with each 
layer compacted on a vibration table for a total 
duration of 120 s to remove entrapped air. After 
24 h of curing in the molds, the specimens were 
demolded and subsequently cured under standard 
conditions. These mortar specimens were used 
for compressive strength and flexural strength 
tests. Following the same mix proportions, cy-
lindrical mortar specimens with a diameter of 50 
mm and a length of 100 mm were prepared. These 

Figure 1. Morphology of CRFP and RFP

Table 1. Chemical composition of cementitious materials (wt.%)
Parameter CaO SiO2 Al2O3 Fe2O3 MgO SO3 Na2O CO2 TiO2 K2O

cement 59.4 18.6 5.42 3.81 0.695 4.46 0.20 5.33 0.366 1.08

RFP 19.8 44.9 10.9 6.95 1.63 0.76 0.901 10.2 0.856 2.51
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specimens were specifically designed for NMR 
testing to analyze the pore structure distribution 
within the mortar, and were not used for mechani-
cal strength tests.

For each mix proportion, three specimens 
were prepared for both compressive and flexural 
strength testing, and three cylindrical specimens 
were prepared for NMR analysis. To ensure con-
sistency, the NMR specimens were assigned the 
same identification numbers as the correspond-
ing strength specimens, as they represent the 
pore structure characteristics of mortar with the 
same mix proportion. Cement mortar specimens 
were cured in water at 20±1 °C for 3, 7, and 28 
days, while the NMR specimens were cured for 

28 days. The dimensions and loading rates of the 
mortar specimens are summarized in Table 3.

Testing methods

Flexural and compressive strength testing

The mechanical performance of cement mor-
tar specimens was evaluated following the GB/T 
17671-2021 standard for cement strength deter-
mination (ISO method). Flexural strength tests 
were performed on a standard mortar testing de-
vice, where each sample was supported on roll-
ers while a loading head applied force steadily at 
0.05 kN/s until failure occurred. Subsequently, 
the two resulting halves underwent compressive 
strength testing at a loading rate of 2.4 kN/s. All 
measurements were documented and subjected 
to statistical analysis. The fractured pieces were 
then submerged in absolute ethanol to halt hydra-
tion and preserve the microstructure for later mi-
croscopic examination.

X-ray diffraction (XRD) analysis

XRD analysis was employed to deter-
mine the phase composition and mineralogical 
changes in the cementitious materials. Cement 
mortar fragments soaked in absolute ethanol 
were ground into fine powder with a particle 
size smaller than 25 μm and then dried in an 
oven. The analysis was performed using a ZXS 
Primus X-ray fluorescence spectrometer. The 
scanning was conducted over a 2θ range of 5° 

Figure 2. Particle size distribution
of Portland cement, RFP, and CRFP

Table 2. Mix proportion design of cement mortar specimens

Mix ID Replacement 
ratio (%) Cement/g RFP/g CRFP/g Sand/g Water/g

N-0 0 450 0 0 1350 225

C-1 10 415 0 45 1350 225

C-2 20 360 0 90 1350 225

C-3 30 315 0 135 1350 225

N-1 10 415 45 0 1350 225

N-2 20 360 90 0 1350 225

N-3 30 315 135 0 1350 225

Table 3. Mix proportion design of cement mortar specimens
Specimen type Dimensions (mm) Loading rate (mm/min or MPa/s) Test purpose

Prismatic specimen 40 × 40 × 16 50 N/s (flexural test) Flexural strength test
Cubic specimen (halved prism 
after flexural test) 40 × 40 × 40 2.4 kN/s (compressive test) Compressive strength test

Cylindrical specimen φ50 × 100 Not applicable (NMR only) Pore structure (NMR test)
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to 70°. The resulting diffraction patterns were 
used to identify hydration products and carbon-
ation products.

Scanning electron microscopy (SEM) analysis

After measuring compressive strength, the 
fractured mortar samples were immersed in an-
hydrous ethanol to terminate further hydration 
reactions and then subjected to low-temperature 
drying. To improve electrical conductivity, the 
specimens, after drying, were coated with a thin 
gold layer via sputtering. Microstructural ex-
amination was performed using a JSM-6610LV 
scanning electron microscope (JEOL Ltd., Ja-
pan). The study primarily investigated the inter-
facial zones, pore distribution, and surface mor-
phology of hydration products in cement mortar 
incorporating RFP and CRFP.

Particle size analysis

Particle size distribution and average diameter 
of cement were measured using a Winner 2000Z 
laser particle size analyzer, RFP, and CRFP. This 
assessment primarily aimed to characterize the 
particle size variations resulting from the carbon-
ation process applied to RFP.

Isothermal calorimetry analysis

An I-Cal 4000 HPC isothermal calorimeter 
(Shanghai Rean Instrument Co., Ltd.) was uti-
lized to examine how varying amounts of CRFP 
replacement affect the early hydration character-
istics of cement. Monitoring the cumulative heat 
released and the heat release rate over the initial 
72 hours allowed for assessment of the impact of 
CRFP dosage on hydration kinetics and the asso-
ciated mechanisms.

Thermogravimetric analysis (TGA)

Thermogravimetric analysis (TGA) was con-
ducted using a STA449 F3 simultaneous thermal 
analyzer (NETZSCH Instruments, Germany) to 
assess the thermal degradation behavior of hy-
dration products in mortars containing RFP and 
CRFP. The measurements were conducted under 
a nitrogen atmosphere over a temperature range 
of 30–1100 °C, with a heating rate of 10 °C/min. 
This study focused on characterizing the mass 
loss patterns of hydration phases within various 
temperature intervals.

Nuclear magnetic resonance (NMR) analysis

A low-field NMR analyzer was utilized to ex-
amine how CRFP impacts the internal pore char-
acteristics of cement mortar. This non-destructive 
method quantitatively evaluates porosity and 
pore size distribution by measuring the transverse 
relaxation time (T₂) of hydrogen nuclei within 
pore water. By comparing samples with varying 
proportions of RFP and CRFP replacements, the 
study assessed the role of carbonation treatment 
in refining porous structure and altering moisture 
distribution inside the mortar.

RESULTS AND DISCUSSION

Compressive and flexural strength 		
of cement mortar

Figure 4 presents the variations in flexural and 
compressive strengths of cement mortar incorpo-
rating different replacement ratios of RFP before 
and after carbonation treatment. As shown in Fig-
ure 4(a), which depicts the compressive strength, 
the mortar strength decreases with increasing re-
placement levels of RFP. Compared with the ref-
erence groups N-1, N-2, and N-3, the compressive 
strength of C-1, C-2, and C-3 specimens after 3 
days of hydration increased by 15.2%, 14.3%, and 
8.0%, respectively. At 28 days of hydration, the 
corresponding improvements were 4.7%, 5.2%, 
and 2.8%. These results indicate that the enhance-
ment in compressive strength is more pronounced 
at the early hydration stage (3 days) than at the 
later stage (28 days). Moreover, the compressive 
strength improvement at lower replacement ra-
tios (C-1 and C-2) is more pronounced than that 
of C-3. This can be attributed to the formation 
of highly reactive amorphous silica during car-
bonation, which reacts with Ca(OH)₂ to generate 
additional C–S–H gels at the early stage of hy-
dration, thereby enhancing the early-age strength 
[43]. Ouyang Xiaowei’s study further confirmed 
that nucleating agents such as CaCO₃ and amor-
phous silica provide additional nucleation sites, 
accelerating early hydration. Finer particle sizes 
or higher surface activity facilitate greater adhe-
sion of hydration products during the initial reac-
tion stage. In addition, CO₂ reacts with Ca(OH)₂ 
and other calcium-bearing phases during carbon-
ation to form CaCO₃, which precipitates within 
pores and microcracks, thereby improving the 
compactness of the matrix. Due to the influence 
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of natural carbonation, a portion of the carbonat-
able hydration products in the cement matrix is 
consumed, thereby limiting the degree of carbon-
ation treatment of RFP. As a result, the strength 
enhancement at 28 days is relatively insignificant 

[27,44]. Caijun Shi pointed out that when the re-
placement ratio is below 20%, the strength im-
provement is comparable to that of the control 
group with 0% replacement. However, once the 
replacement ratio exceeds 20%, the enhancement 

Figure 3. Flexural and compressive strength tests of cement mortar

Figure 4. a) Compressive strength of cement mortars with CRFP and RFP at different replacement levels
b) Flexural strength of cement mortars with CRFP and RFP at different replacement levels
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effect declines. The observed improvement in 
strength is attributed to the CaCO₃ generated dur-
ing carbonation, which provides abundant nucle-
ation sites for hydration products and thereby 
accelerates cement hydration[45]. Similarly, the 
study by Ding Yahong demonstrated that at a 20% 
replacement ratio, carbonated CRFP can signifi-
cantly improve both the strength and the activity 
index of mortar, with the compressive strength in-
creased by up to 27.8% [32]. In summary, CRFP 
at low replacement ratios can significantly en-
hance the early compressive strength of cement 
mortar. This improvement is primarily attributed 
to the nucleation effect of CaCO₃ and amorphous 
silica, which promotes the formation of hydra-
tion products and fills pores, thereby improving 
structural compactness. However, with increas-
ing replacement ratios and prolonged curing ages, 
the strength gain gradually diminishes due to the 
limited extent of carbonation reactions and the 
consumption of carbonatable hydration products. 
The compressive and flexural strength results of 
cement mortar are presented in Figure 3.

As shown in Figure 4(b), the flexural strength 
of C-1, C-2, and C-3 at 3 days increased by 6.5%, 
4.0%, and 0.6%, respectively, while at 28 days 
the corresponding increases were 9.7%, 4.0%, 
and 0.7%. These results indicate that carbonation 
enhances the bonding performance between the 
cement matrix and fine sand particles, leading to 
an interfacial transition zone enriched with hy-
dration product coatings, thereby improving the 
overall structure of the mortar. Shuvo reported 
that carbonation treatment can activate or utilize 
the residual available calcium sources in recycled 
powder, such as Ca(OH)₂ or partially reacted hy-
drated calcium phases. This process increases 
the release of Ca²⁺ at the powder–paste interface, 
thereby promoting the pozzolanic reaction and 
the formation of additional C–S–H gels, which 
in turn enhances the flexural performance[46]. 
Ding et al. investigated RFP subjected to differ-
ent carbonation treatments and incorporated into 
mortar, and found that carbonation significantly 
improved the mechanical properties. Among 
the tested methods, pre-soaking carbonation ex-
hibited the most pronounced effect, with flex-
ural strength increasing by up to approximately 
27.85% [47]. However, when the replacement 
ratio exceeded 20%, the strength enhancement 
gradually diminished. Zhang J. et al. investigat-
ed the role of CRFP in cement-based materials 
and reported that at high replacement ratios, the 

strength decreases due to the dilution effect[48]. 
Nevertheless, the nucleation effect of CaCO₃ and 
the optimization of pore structure can still con-
tribute to a certain degree of strength enhance-
ment. At low replacement ratios, CRFP can sig-
nificantly enhance the flexural strength of mortar. 
The underlying mechanism lies in the CaCO₃ and 
amorphous silica generated during carbonation, 
which act as nucleation agents within the interfa-
cial transition zone (ITZ), promoting the forma-
tion of C–S–H gels and filling pores [35,49]. This 
process improves the bonding between the paste 
and aggregates, optimizes the pore structure, and 
enhances resistance to crack propagation. How-
ever, when the replacement ratio exceeds 20%, 
the dilution effect becomes more pronounced, 
and the strength gain gradually diminishes.

Analysis of mortar strength indicates that in-
corporating CRFP leads to improvements in both 
compressive and flexural strengths compared with 
mortar containing RFP. Carbonation transforms 
Ca(OH)₂, C–S–H gels, and ettringite phases pres-
ent in the adhered old paste of CRFP into CaCO₃ 
and amorphous silica, thereby densifying the mi-
crostructure [50]. The CaCO₃ produced during 
carbonation, together with the abundant SiO₂ in 
CRFP, provides additional nucleation sites for 
cement hydration, promotes the formation of 
hydration products, and ultimately enhances the 
strength of mortar containing RFP.

Microstructural analysis

Figure 5 presents the micro-morphologies of 
mortars incorporating RFP at different replace-
ment ratios (N-1, N-2, and N-3) after 3 and 28 
days of hydration. As shown in the figure, cement 
mortar specimens incorporating RFP exhibit a 
relatively loose overall structure, and distinct mi-
crocracks can be observed in samples N-1, N-2, 
and N-3. With increasing replacement ratios, the 
manifestation of microcracks becomes more pro-
nounced. This is primarily because the incorpo-
ration of RFP exerts a dilution effect on cement, 
which slows down the hydration process and ag-
gravates crack development within the mortar. In 
contrast, although mortars containing CRFP (C-1, 
C-2, and C-3) also tend to exhibit a looser struc-
ture with increasing replacement ratios, their mi-
cro-morphologies remain noticeably denser com-
pared with their uncarbonated counterparts (N-1, 
N-2, and N-3) at the same replacement levels. 
Zhu et al. reported that RFP exhibits a high water 
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absorption capacity, and its particle morphology 
and interfacial characteristics are inferior to those 
of cement. In RFP, the particle connections are 
loose, accompanied by large voids and pores. 
After 1 h of carbonation, however, the micro-
structure tends to become denser, with abundant 
CaCO₃ crystals and amorphous SiO₂ gel formed 
and deposited within the pores and microcracks. 
This process leads to a denser interfacial transi-
tion zone (ITZ) and a stronger bonding between 
the colloidal products and the cement matrix [51].

The microstructures of N-1 and C-1 specimens 
with a 10% replacement ratio exhibited relatively 
high compactness after 3 and 28 days of hydration. 
This is because, under low replacement conditions, 
the system still contains a substantial amount of 
reactive substances, and the dilution effect of RFP 
on the cement hydration process is relatively mi-
nor. When the replacement ratio increased to 20%, 

the C-2 specimen exhibited more flocculent and 
plate-like hydration products after 3 days of hy-
dration compared with N-2. This can be attributed 
to the rapid nucleation and growth of early-stage 
C–S–H on the surface of CRFP. Ding et al. further 
reported that carbonated samples show a more 
pronounced formation of gel products during the 
initial hydration stage, particularly in the early to 
middle hydration periods. Jiang et al. further con-
firmed that after 3 days of hydration, specimens 
incorporating CRFP contained more flocculent 
C–S–H, ettringite, and a greater number of granu-
lar products. Compared with the uncarbonated 
specimens, the presence of CO₃²⁻ ions introduced 
by carbonation provided additional nucleation 
sites, which facilitated the growth of early-stage 
C–S–H and contributed to its more uniform dis-
tribution [32]. After 28 days of hydration, the sur-
face structure of C-2 appeared denser than that of 

Figure 5. Micro-morphologies of mortar with different replacement ratios
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N-2, indicating that carbonation can enhance the 
bonding performance both within the paste and 
between particles. This process effectively fills 
microcracks, resulting in a relatively compact 
cement mortar structure. Xiaowei Ouyang con-
firmed through crack characterization that CRFP 
particles exhibit superior performance in restrain-
ing crack propagation compared with their uncar-
bonated counterparts [52]. At a replacement ratio 
of 30%, noticeable surface cracks were observed 
in both N-3 and C-3 mortar specimens, regardless 
of whether the hydration age was 3 or 28 days. 
This phenomenon can be attributed to the difficul-
ty of carbonation products in effectively filling the 
micro-pores under high replacement levels. Jiake 
Zhang pointed out that when the replacement ratio 
exceeds 20–30%, the excessive amount of CRFP 
exerts a strong dilution effect, thereby reducing 
the effective reactivity of cement. At high replace-
ment levels, the availability of hydratable phases 
in the cement matrix decreases, and the uneven 
distribution of carbonation products may also lead 
to structural discontinuities or hinder the filling of 
microcracks [53].

Cement mortar incorporating RFP exhibited 
a relatively loose structure, with the number of 
microcracks increasing as the replacement ratio 
rose, primarily due to the dilution effect that weak-
ened cement hydration. In contrast, CRFP gener-
ated CaCO₃ crystals and SiO₂, which promoted the 
hydration process of cement. As a result, mortars 
with the same replacement ratio showed a denser 
structure, accompanied by faster and more uniform 
formation of early-stage C–S–H. Furthermore, car-
bonation improved the compactness of the ITZ and 
contributed to the filling of pores and microcracks 
[27,54]. At a replacement ratio of 10%, the influ-
ence on the mortar structure was relatively minor. 
When the replacement ratio reached 20%, the car-
bonated samples exhibited more abundant hydra-
tion products and a denser microstructure. How-
ever, at a 30% replacement ratio, significant cracks 
were observed, as the excessive dilution effect and 
insufficient reactivity hindered effective pore fill-
ing, thereby reducing the overall structural integrity.

XRD analysis

Figure 6 shows the XRD patterns of C-2 and 
N-2 pastes after 3, 7, and 28 days of hydration. 
The main crystalline phases identified include 
Aft, Ca (OH)2, SiO2, C₃S, and CaCO3. It can be 
observed that the XRD patterns of C-2 and N-2 

at different curing ages are generally similar, but 
differences exist in the peak intensities. A more 
detailed analysis reveals that at all curing ages, 
the Ca (OH)2 peaks of C-2 are stronger than those 
of N-2, whereas the C₃S peaks consistently ap-
pear weaker in C-2 than in N-2. Roz-Ud-Din 
Nassar reported that the weakening of C₃S peaks 
observed at later curing ages or with the incor-
poration of reactive powders indicates that CRFP 
promotes the hydration of C₃S. This effect is at-
tributed to the nucleation action of carbonation 
products such as CaCO3 and amorphous silica, 
which accelerate the hydration of C₃S. Conse-
quently, CRFP provides additional nucleation 
sites for cement hydration, facilitating the forma-
tion of more hydration products while simultane-
ously consuming greater amounts of the original 
cementitious phases [55]. Further analysis shows 
that the CaCO3 peaks of C-2 are stronger than 
those of N-2, and the AFt peaks exhibit a trend 
similar to that of Ca (OH)2. This can be attrib-
uted to the increased presence of CaCO3 in the 
CRFP, which enhances the likelihood of reactions 
between CaCO3 and the aluminate phases [56]. 
With prolonged curing age, the hydration pro-
cess becomes more complete, and the diffraction 
peaks of hydration products are further intensi-
fied. From the perspective of phase composition, 
carbonation significantly improves the perfor-
mance of RFP. Jianzhuang Xiao suggested that 
carbonation treatment of RFP can effectively ad-
dress the problem of compositional heterogeneity, 
making its phase characteristics closer to those of 
cement while also facilitating the transformation 
of its constituents [57]. Specifically, carbonation 
converts Ca (OH)2 and C–S–H gels in RFP into 
CaCO3 and amorphous silica.

TGA analysis

As shown in Figure 7, TGA was conducted on 
mortar specimens with a 20% replacement ratio 
of RFP. During the heating process, three major 
weight-loss stages were observed: 80–300 °C, 
corresponding to the decomposition of physically 
bound water, C–S–H gels, and ettringite; 375–
450 °C, corresponding to the decomposition of 
Ca(OH)₂; and 540–950 °C, corresponding to the 
decomposition of CaCO3 [37]. Within the heating 
range of 20–1100 °C, the mass loss rate of C-2 
was consistently higher than that of N-2. The total 
mass loss of C-2 reached 10.88%, compared with 
10.23% for N-2. The greater mass loss observed 
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in C-2 indicates that carbonation promotes the 
formation of more hydration products during ce-
ment hydration. With increasing temperature, the 
mass loss also increased. In the range of 80–300 
°C, the mass loss rate of C-2 was 3.81%, com-
pared with 2.10% for N-2. This result is consis-
tent with the findings of Neves Junior et al. and 
Zhong et al., indicating that the incorporation of 
CRFP leads to greater mass loss in the low- and 
medium-temperature ranges than uncarbonated 
samples. This reflects the higher total content of 
bound water and hydration products in the car-
bonated system. In the range of 375–450 °C, the 
mass loss rates of C-2 and N-2 were 1.40% and 
1.36%, respectively. This difference can be at-
tributed to the higher content of Ca (OH)2 in C-2 
undergoing thermal decomposition [42]. When 
the temperature rose above 540 °C, the mass loss 
was mainly attributed to the thermal decompo-
sition of CaCO3. Due to the influence of natural 
carbonation, the mass loss rate of CaCO3 in the 
N-2 sample was approximately 0.46%, whereas 
that of C-2 reached about 1.56%. This indicates 
that the carbonation process is accompanied by 
the formation of additional CaCO3 crystals. Con-
sistently, previous studies have also reported 
greater mass loss in carbonated samples at high-
temperature stages due to CaCO3 decomposi-
tion. The literature also indicates that carbonated 
samples generally exhibit greater mass loss in the 

high-temperature range, which is a typical char-
acteristic of CaCO3 decomposition. For example, 
Zhong et al. observed a similar phenomenon in 
their study on recycled aggregates [58]. Thermo-
gravimetric analysis further demonstrates that 
carbonation treatment can activate the pozzolanic 
activity of RFP, thereby promoting the degree of 
cement hydration compared with RFP. This find-
ing is consistent with the variations in product 
peak intensities observed in the XRD patterns.

Heat of hydration analysis

As shown in Figure 8, the hydration heat evo-
lution within 72 hours was measured for pastes 
with water-to-cement ratio of 0.5, where cement 
was partially replaced by CRFP and RFP at re-
placement ratios of 10%, 20%, and 30%. Figure 
8(a) illustrates the variation in cumulative heat re-
lease of pastes with cement partially replaced by 
CRFP and RFP. The results show that the cumula-
tive heat release per unit mass of cement after 72 
h was 285.21 J for N-0, 253.35 J for C-1, 219.92 J 
for C-2, and 213.53 J for C-3. In comparison, the 
corresponding values for N-1, N-2, and N-3 were 
255.61 J, 240.80 J, and 230.52 J, respectively. 
Relative to N-1, N-2, and N-3, the heat release of 
C-1, C-2, and C-3 increased by 0.8%, 9.5%, and 
7.9%, respectively, with C-2 exhibiting the most 
pronounced effect in promoting cement hydration 

Figure 6. XRD patterns of mortar pastes with 20% RFP/CRFP replacement at different hydration ages
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compared with C-1 and C-3. Yuanyuan Mo in-
vestigated the effect of CRFP and RFP at a 20% 
replacement ratio on cement hydration and found 
that RFP exhibited both filler and nucleation ef-
fects at the early stage. As a result, both the heat 
release rate and the cumulative heat release per 
unit mass of cement were increased [18].

Figure 8(b) shows the heat release rate curves 
of cement pastes with partial replacement by 
CRFP and RFP. The results indicate that both re-
placements led to noticeable changes in the hy-
dration kinetics. In particular, the incorporation 
of CRFP advanced the occurrence of the first 
exothermic peak, while delaying the second peak. 
The hydration process of cement-based materi-
als can be divided into five stages: dissolution, 
induction, acceleration, deceleration, and steady 
state [18]. Within the first 3 h of hydration, corre-
sponding to the dissolution and induction periods, 
the heat release rates per unit mass of C-1, C-2, 
and C-3 were all higher than that of N-0. Among 
them, C-2 exhibited a greater heat release rate 
than N-0, while C-1 and C-3 showed rates similar 
to that of cement. In contrast, the rates of N-1, 
N-2, and N-3 were lower than N-0. This behavior 
may be attributed to the early nucleation effect of 
CaCO3 and the filler effect, which accelerate the 
reaction between C₃A and water and promote the 
generation of hydration products. During the ac-
celeration period, the first exothermic peak of the 
RFP-incorporated samples shifted leftward, and 
the heat release rates per unit mass of N-1, N-2, 
and N-3 were consistently higher than those of 

C-1, C-2, and C-3 throughout both the accelera-
tion and deceleration periods. This phenomenon 
may be explained by the progressive formation 
of hydration products that encapsulated C₃A and 
cement particles, creating a physical barrier and 
product layer on the surfaces of C₃A and CaCO₃. 
In addition, CaCO₃ may react with other com-
pounds, and these reactions could consume part 
of the Ca(OH)2, thereby influencing the hydration 
kinetics of C₃A and slowing down the overall hy-
dration process. During the deceleration period, a 
distinct secondary hydration peak was observed, 
which can be attributed to the transformation of 
AFt into AFm [58]. The secondary hydration 
peaks of N-1, N-2, and N-3 appeared earlier than 
those of C-1, C-2, and C-3, indicating that the 
incorporation of CRFP prolongs the secondary 
hydration of cement. Hydration heat analysis fur-
ther demonstrates that CRFP promotes the early 
hydration of cement. Compared with RFP, CRFP 
increased the cumulative heat release within 72 
h. However, as the hydration process progressed, 
the physical barrier effect and the consumption 
of reactive phases caused the heat release rate to 
decrease during the acceleration period, while the 
duration of secondary hydration was extended.

NMR analysis

The T₂ relaxation time is positively correlated 
with pore size, that is, the longer the relaxation 
time, the larger the corresponding pore radius. 
Moreover, the amplitude of the T₂ signal reflects 

Figure 7. Thermogravimetric analysis of cement mortar with 20% CRFP/RCF replacement
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the pore size distribution: the greater the signal 
amplitude, the larger the number of pores [59]. 
NMR pore size distribution curve exhibited a bi-
modal characteristic, in which the left peak (Peak 
1) corresponded to mesopores and the right peak 

(Peak 2) corresponded to medium-sized pores. 
The intensity of Peak 1 was higher than that of 
Peak 2, indicating that mesopores dominate 
the pore structure within the cement mortar. As 
shown in Figure 9(a), compared with N-1, N-2, 

Figure 8. Heat evolution rate and cumulative heat release per unit mass of cement in cement pastes
with different replacement ratios of RFP

Figure 9. T₂ relaxation time distribution curves of cement mortars with RFP
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and N-3, the Peak 1 profiles of C-1, C-2, and 
C-3 shifted rightward, while the peak intensities 
of both peaks were lower in C-1, C-2, and C-3. 
This indicates that the incorporation of CRFP 
increased the pore radius but reduced the over-
all distribution of mesopores, medium pores, and 
macropores [60]. As shown in Figures 9(b) and 
9(c), compared with the control group N-0, both 
C-1, C-2, C-3 and N-1, N-2, N-3 exhibited higher 
values for Peak 1 and Peak 2, and the overall area 
of the T₂ spectra was also larger. With increasing 
replacement ratios of CRFP and RFP, the overall 
curves shifted leftward, indicating that the incor-
poration of CRFP and RFP led to an increase in 
the proportion of mesopores, medium pores, and 
macropores in cement mortar. However, the inclu-
sion of RFP also exerted a filling effect, resulting 
in an optimization of the internal pore structure. 
This was manifested by a reduction in the radius 
of mesopores as the replacement ratio increased. 
Roz-Ud-Din Nassar incorporated CRFP into 
high-performance concrete and found that, com-
pared with RFP, the tensile strength increased by 
2.96% [55]. The addition of CRFP also reduced 
the porosity of the specimens, thereby contrib-
uting to the improvement of concrete compact-
ness. Based on the variations in the T₂ distribution 
curves, it can be concluded that the incorporation 
of RFP increases the overall porosity of mortar. 
However, after carbonation treatment, the poros-
ity of mesopores, medium pores, and macropores 
can be effectively reduced, although the average 
pore size shows a certain degree of increase.

CONCLUSIONS

1.	The incorporation of CRFP significantly im-
proved both the mechanical properties and mi-
crostructure of cement mortar. Specifically, at 
low replacement ratios, compressive and flex-
ural strengths – particularly early-age strength 
at 3 days – were markedly enhanced, with max-
imum increases exceeding 15%. The underly-
ing mechanism is that carbonation products 
provide additional nucleation sites and pro-
mote the early formation of hydration products, 
thereby reducing porosity and improving inter-
facial bonding. Furthermore, thermogravimet-
ric analysis and XRD results revealed that the 
CRFP group generated larger amounts of hy-
dration products such as Ca(OH)₂ and CaCO₃. 
The heat evolution curves demonstrated that 

CRFP not only accelerated early hydration but 
also delayed the occurrence of later hydration 
peaks, while pore structure analysis indicated a 
refinement from macropores to mesopores and 
medium pores. Overall, CRFP not only enhanc-
es the macroscopic mechanical performance 
and structural compactness of cement mortar 
but also contributes to mineral carbonation, of-
fering additional environmental benefits.

2.	Carbonation-treated RFP provides effective 
nucleation sites for cement hydration through 
the formation of surface carbonates and reac-
tive SiO2. This significantly promotes the gen-
eration of early hydration products, advances 
the occurrence of the first exothermic peak, and 
increases the total heat release, accompanied 
by the formation of additional Ca (OH)2 and 
CaCO3. Consequently, the hydration process is 
accelerated, and the microstructural compact-
ness is improved.

3.	Carbonated recycled aggregates primarily re-
duce water absorption and porosity through 
pore-filling effects and CaCO3 deposition, 
thereby improving the compactness and dura-
bility of recycled concrete. In contrast, CRFP, 
owing to its finer particle size and larger specific 
surface area, not only exhibits stronger carbon 
sequestration capacity but also provides abun-
dant nucleation sites, promoting the formation 
of C–S–H gels, significantly enhancing early-
age strength, and refining the interfacial transi-
tion zone. From both macroscopic mechanical 
performance and microstructural evolution per-
spectives, this study verifies the unique advan-
tages of CRFP in early strength improvement 
and pore structure optimization, providing new 
theoretical foundations and practical pathways 
for advancing the high-value utilization of con-
struction and demolition waste.
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