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INTRODUCTION

Nanomaterials (1–100 nm) are significantly 
different from conventional materials and widely 
gained attention in agricultural research during 
recent years (Muhammad et al., 2020; Tripa-
thi et al., 2023; Zaman et al., 2025). Iron is the 

most demanded of essential trace elements for 
plants and is the “core driver” of chlorophyll 
synthesis. When iron is lacking, chloroplasts in 
plants cannot develop normally, which hinders 
photosynthesis (Therby-Vale et al., 2022). Iron 
is also involved in the process of electron trans-
port chains, such as cytochrome and ferroredoxin 
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ABSTRACT
Iron is the most demanded trace element among the essential micronutrients for plants, participating in the electron 
transport chain processes such as cytochrome and ferredoxin in photosynthesis. Iron can activate enzymes like cata-
lase and peroxidase, helping to eliminate free radicals and enhance the stress resistance of crops. In recent years, na-
no-iron powder has been widely applied in agricultural production, including in grains, oilseeds, and Chinese herbal 
medicines, with significant yield-increasing effects. However, there are no reports on the application of nano-iron in 
improving the salt and alkali tolerance of flax and its physiological mechanism. This study aimed to verify the ef-
fect of nano-iron on the growth traits of flax in saline-alkali soil through the analysis of growth traits and metabolic 
pathways, and to explore the mechanism of action of related metabolites in promoting salt tolerance in flax through 
statistical analysis. The results showed that, emergence rate, survival rate, root diameter and stem diameter of flax 
increased by 24.8%, 22.5%, 25.7% and 6.9%, respectively, in saline-alkali soil after nano-iron treatment. Through 
non-targeted metabolomics testing, 15 up-regulated metabolite types including amino acids and their derivatives, 
ketones, and lactones were screened out, and their information related to the salt tolerance of flax was obtained. 
By screening metabolic pathways and analyzing the salt tolerance mechanism, four pathways were selected from 
20 metabolic pathways, and the metabolites related to salt tolerance were precisely screened out on each pathway. 
Among them, five metabolites, including arginine-threonine-lysine-arginine peptide, Histidine leucine, N-L-histi-
dine L-leucine, Arginine-isoleucine-threonine-valine-lysine polypeptide and Na-ser-oh, were screened out on the 
amino acid metabolism pathway; two metabolites, PA and PC, were screened out on the lipid metabolism synthesis 
pathway; one metabolite, lupeol, was screened out on the sesquiterpene and triterpene biosynthesis pathway; one 
metabolite, 3,5-dihydroxydecanoate, was screened out on the alcohol biosynthesis pathway.
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in photosynthesis convert energy into ATP (Rai 
et al., 2022; Alam et al., 2025). In addition, iron 
can activate catalase, peroxidase, etc., which help 
eliminate free radicals and enhance crop stress 
resistance (Azam et al., 2025). Metal nanomateri-
als are zero-dimensional and has exotic proper-
ties that are different from macroscopic objects, 
individual atoms and chemistry (Muhammad 
et al., 2020). In recent years, nano-iron powder 
has been widely used in agricultural production, 
involving grains, oils, and Chinese herbal medi-
cines, with notable yield-increasing effects (Dewi 
et al., 2022; Ahmad et al., 2024; Pérez-Hernández 
et al., 2024). Relevant research on crops showed 
that nano iron powder significantly promoted the 
root development, leaf thickness and chlorophyll 
content, and improve the stress resistance of crops 
(El-Desouky et al., 2021; Rani et al., 2022; Rah-
man et al., 2023; Azam et al., 2025).

Flax is a major oil crop grown in arid and 
semi-arid regions in Gansu and Inner Mongolia, 
China, and has very important nutritional and eco-
nomic value (Liu et al., 2011). Flax seeds are rich 
in omega-3 and alpha-linolenic acid, lignans and 
dietary fiber (Noreen et al., 2025). Flax metabo-
lites can provide effective assistance in studying 
biological processes and mechanisms (Gao et al., 
2024; Ehsan et al., 2023: Khan et al., 2024). The 
metabolic basis of macroscopic phenotypes in dif-
ferent crop individuals can be compared through 
qualitative and quantitative analysis of metabo-
lites in different metabolic pathways or networks 
(Somalraju and Fofana, 2023; Dong et al., 2024; 
van Aubel et al., 2024). Non-targeted metabolome 
analysis can be used to find the differential metabo-
lites between treatments and control group, and to 
clarify their links to biological processes or states 
(Yang et al., 2018; Wu et al., 2021). This study 
discussed the effect of nano-iron on the growth 
traits of flax from saline-alkali soils, and identified 
the mechanism of nano-iron on salt resistance of 
flax associated with the metabolic pathways.

MATERIALS AND METHODS

Study site and materials 

The study site is located in Luyang Town, 
Jingtai County, Gansu Province and was a severely 
saline-alkali land with soil pH value of 8.63 and to-
tal salt content of 0.81%. Nano iron was provided 
by Gansu Gushuo Nano Agricultural Technology 
Co., Ltd., and the flax variety Longya No.14 was 
provided by Gansu Academy of Agricultural Sci-
ences. 15 g nano-iron per hectare was applied, in-
cluding 7.5 g for dressing with 75 kg flax seed, 3 
g for spraying during the fir period (5–10 cm), and 
4.5 g for spraying during the rapid growth period. 
The test materials are grouped as shown in Table 1.

Sample testing

One week after the treatments were complet-
ed, the leaves of the treated and control flax were 
taken respectively (three repetitions) and stored 
in an ultra-low temperature refrigerator for meta-
bolic pathways analysis. Non-target metabolomic 
tests were conducted to identify the differential 
metabolites. The flax samples were first placed in 
a freezer dryer and vacuum freeze-dried for 63 
hours. The dried samples were ground into a fine 
powder by a grinder set at 30 Hz for 1.5 minutes. 
50 mg of the sample powder was extracted with 
1200 μL of 70% methanol-water solution (pre-
cooled at -20 °C). The mixture was vortexed for 
30 seconds, which repeated six times at 30-min-
ute intervals, and then centrifuged for 3 minutes at 
12,000 rpm. At last, the supernatant was collected 
and filtered through a 0.22 μm micropore mem-
brane, and stored for UPLC-MS/MS analysis.

Data analysis

In this study, the principal component analy-
sis (PCA) and orthogonal partial least squares dis-
criminant analysis (OPLS-DA) were performed. 

Table 1. The experimental materials
Species Tissue Sample Group

Flax leaf NL-1 NL

Flax leaf NL-2 NL

Flax leaf NL-3 NL

Flax leaf CKL-1 CKL

Flax leaf CKL-2 CKL

Flax leaf CKL-3 CKL
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Univariate analysis primarily involved fold 
change (FC) analysis. The metabolites were iden-
tified based on variable importance in projection 
(VIP) scores derived from the OPLS-DA model. 
Further screening of differential metabolites was 
conducted by integrating VIP values with P-val-
ues, false discovery rates (FDR), or fold change 
values obtained through univariate analysis. By 
combining both univariate and multivariate ap-
proaches, a total of 550 metabolites were ulti-
mately identified, of which 253 were up-regulat-
ed and 297 were down-regulated.

RESULTS

The effects of nano-iron on growth traits 	
of flax in saline-alkali land

The test results show, Nano-iron treatment 
had significant effects on the growth traits of flax. 
Compared with the control group, the emergence 
rate, seedling preservation rate of flax from sa-
line-alkali land increased by 24.8%, 22.5%; The 
standard for root thickness is the most obvious. 
was that the experimental treatment was increased 
compared with the control 25.7%,The thickness 
of the stem only increased 6.9%, We believe that 

the thickening effect of nano-iron on the roots of 
flax might be the main reason for its strong stress 
resistance (Table 2).

Metabolomic analysis 

Group principal component analysis

In this study, PCA was first performed on the 
grouped samples to observe the degree of varia-
tion between different groups of samples. The 
results showed that the NL three replicates were 
all distributed in the range of less than PC1 val-
ue -40, while the CKL three replicates were all 
greater than 40, indicating significant differences 
among the samples (Figure 1).

Orthogonal partial least squares 	
discriminant analysis

PLS-DA method was used to solve insensitiv-
ity of variables with low correlation. Compared 
with PCA, PLS-DA maximizes the distinction 
between groups, which is beneficial for finding 
differential metabolites. Where X is the sample 
quantitative information matrix and Y is the 
sample grouping information matrix. OPLS-DA 
performs log2 conversion on the original data and 
then centralizes it. The results showed that the 

Table 2. Effects of nano-iron on flax growth in saline-alkali land
Serial number Emergence rate (%) Seedling preservation rate (%) Root thickness (mm) Stem thickness (mm)

NL 75.5 66.9 2.66 2.02

CKL 60.5 54.6 2.12 1.89

Increase (%) 24.8 22.5 25.7 6.9

Figure 1. Principal component analysis of the groups
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Figure 2. Path of OPLS-DA score graph

grouped samples were mostly distributed at the 
two ends of the plus - minus 50 intervals on the 
X-axis, with significant differences (Figure 2).

Volcano plot of Differential metabolites

A Volcano Plot is primarily used to show the 
difference in the relative content of metabolites 
between two groups of samples and the signifi-
cance of the difference statistically. In this study, 
the metabolites were screened by the condition 
“metabolites with VIP > 1; metabolites with fold 
change ≥ 2 and fold change ≤0.5”. If the differ-
ences of metabolites between the control and 
treatments were more than 2 times or less than 
0.5 times, the result was considered significantly.
The experimental results show that the number of 
up-regulated metabolites is 491, the number of 
down-regulated metabolites is 503, and there is no 
significant change in 5.351 metabolites (Figure 3).

Bar chart of differential metabolites

By analyzing 491 upregulated metabolites, 
we ultimately screened out 15 metabolites with 
significant differences.The 15 upregulated me-
tabolites were amino acids and their derivatives, 
ketones, lactones, phosphatidylic acids, phospha-
tidylcholine, benzene and its derivatives, triterpe-
noids, organic acids, alcohols, etc (Table 3).

Metabolic pathway screening

The screening of metabolic pathways in this 
study was mainly based on the differential abun-
dance Score (DA Score), which captures the 

overall changes of all metabolites in a certain 
pathway. The DA score is an analytical method 
based on metabolic changes in pathways, and is 
the difference between up-regulated number of 
differential metabolites and down-regulated num-
ber of differential metabolites annotated to the to-
tal number of metabolites of the pathway. The top 
20 pathways were shown in Figure 4).

In this study, four of the 20 metabolic path-
ways had corresponding upregulated metabolites. 
Among them, 5 metabolites were identified for the 
D-Amino acid metabolism pathway, 2 metabo-
lites were screened on the Ether lipid metabolism 
synthesis pathway; 1 metabolites was screened 
for Sesquiterpenoid and triterpenoid biosynthesis 
metabolic pathway; 1 metabolite screened for the 
Steroid biosynthesis metabolic pathway (Table 4).

DISCUSSION

Effects of nano-iron application on flax 
growth in saline-alkali land

Results of this study showed that nano-iron 
treatments had a significant effect on the growth 
traits of flax from saline-alkali land. Compared 
with the control group, the emergence rate, seed-
ling preservation rate, root and stem thickness all 
increased. As a nanomaterial, nano-iron has high 
reactivity and can reduce the accumulation of ex-
cessive sodium ions in plants by adsorbing or bind-
ing them, thereby reducing salt stress damage to 
flax (Shahzad et al., 2024). In addition, nano-iron 



73

Journal of Ecological Engineering 2026, 27(3), 69–77

can reduce oxidative stress caused by salt and reg-
ulate the activity of antioxidant enzymes in plants, 
which protect the integrity of cell membrane struc-
ture and function (Alqudah et al., 2025). Secondly, 
the effect of nano-iron on salt resistance of flax is 
also reflected in promoting plant nutrient absorp-
tion. Salt stress not only causes ionic poisoning, 
but also prevent plants absorbing essential nutri-
ents, such as iron whose deficiency will aggravate 

the growth inhibition of plants (Verma et al., 2018; 
Sarkar and Kalita, 2023). Nano-iron, as an iron 
source, can be effectively absorbed by flax roots, 
and can continuously provide iron to plants for the 
slow-release properties of nanoparticles, and then 
to promote chlorophyll synthesis and photosynthe-
sis (Ullah et al., 2024). In addition, by improving 
the rhizosphere microenvironment, nano-iron can 
help flax absorb other nutrients such as phosphorus 

Figure 3. Volcano map of differential metabolites

Figure 4. Variance abundance score graph
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and potassium, and then improve the salt tolerance 
of plants (Verma et al., 2018; Sarkar and Kalita, 
2023). This study also preliminarily verified the ef-
fect of nano-iron on the improvement of growth 
traits of flax in saline-alkali land, particularly on 
emergence rate, seedling preservation rate, root 
and stem thickness.

Screening of different metabolites 		
and correlation with salt resistance

To explore the mechanism of nano-iron on ger-
mination rate, seedling preservation rate and root 
thickening of flax in saline-alkali land, this study 

screened out differential metabolites and informa-
tion related to salt resistance traits of flax through 
non-target metabolomics tests. Combined with uni-
variate and multivariate statistical analysis meth-
ods and multi-angle analysis results, a total of 550 
metabolites were screened, including 253 upregu-
lated and 297 down-regulated metabolites. Among 
them, 15 metabolites such as amino acids and their 
derivatives, ketones and lactones were screened 
for upregulation, which played an important role 
in enhancing plant resistance. Amino acids and 
their derivatives help maintain the integrity of the 
cell membrane structure, prevent membrane lipid 

Table 3. Differential metabolite screening
Serial number Names of metabolites Metabolite type Molecular formula

1 Arg-Thr-Lys-Arg Amino acids and their 
derivatives C22H45N11O6

2 Histidylleucine Amino acids and their 
derivatives C12H20N4O3

3

Ar (4) - 4, 8 aalpha - Dimethyl - 6 alpha - [1 - methyl 
- 1 - (beta - D - glucopyranosyloxy) baton rouge] 1, 
4-trichlorobenzene abeta, 5,6,7,8,8 octahydronaphthalene 
- a 2-one

Ketone compounds C21H34O7

4 (3,6, 9-trimethylidene-2-OXO-3A,4,5, 6A,7,8, 9A,9b-
octahydroazuleno[4,5-b]furan-8-yl) acetate Lactone compounds C17H20O4

5 Arg-Ile-Thr-Val-Lys Amino acids and their 
derivatives C27H53N9O7

6 PA(14:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) Phosphatidic acid C39H63O8P

7 1-(9Z,12Z-octadecadienoyl)-2-tetradecanoyl-glycero-3-
phosphocholine Phosphatidylcholine C40H76NO8P

8 L-Tyrosyl-L-Threonine Amino acids and their 
derivatives C13H18N2O5

9 thio-Miltefosine Phosphatidylcholine C21H46NO3PS

10 Nap-Ser-OH Amino acids and their 
derivatives C21H18N2O7

11
(e) 20-7 - butyl - 11,16,23,24,25 pentahydroxy - 10,19,20 - 
trimethyl - 15 - methylidene - 8,13,28,29 - tetraoxatetracyclo 
[22.3.1.13, 6.01 2, 14] nonacos - 20 - ene - 9, 18 - dione

Benzene and its 
derivatives C33H52O11

12 Lupeol Triterpenoids C30H50O

13 Ganoderic acid Ma Organic acids C34H52O7

14
[3-Hydroxy-1-[3-hydroxy-1-oxO-1 -(2,3,4,5, 
6-pentahydroxyHexoxy)decan-5-yl]oxy-1-oxodecan-5-yl] 
3,5-dihydroxydecanoate

Alcohols C36H68O15

15 5 - N - (6 - aminohexyl) - 7 - N - benzyl - 3 - propan - 2 - 
ylpyrazolo [1, 5 - a] pyrimidine - 5, 7 - diamine

Benzene and its 
derivatives C22H32N6

Table 4. Metabolic pathways and screening of metabolites
Metabolic pathways Related metabolites on the pathway

D-Amino acid metabolism pathway
Arginine-threonine-lysine-arginine polypeptide; Histidine leucine; N-L-

histidine L-leucine; Arginine-isoleucine-threonine-valine-lysine polypeptide; 
Na-ser-oh;

Ether lipid metabolism pathway Polyamines (PA), phosphatidylcholine (PC)
Sesquiterpene and triterpene biosynthetic 
pathways Lupine: lupeol

Steroid biosynthesis pathway 3, 5-dihydroxydecanoate



75

Journal of Ecological Engineering 2026, 27(3), 69–77

peroxidation under adverse conditions, and protect 
the cell from damage (Cai and Aharoni, 2022; Ro-
manenko et al., 2024). As precursors to many sec-
ondary metabolites, such as phenolic compounds, 
alkaloids, etc., Amino acids not only have defensive 
functions but also enhance the plant’s resilience 
to adverse conditions (Romanenko et al., 2024). 
Ketones also perform well in plant resistance, for 
example, flavonoids show significant enrichment 
under salt stress (Feng et al., 2023), and Lactone 
compounds extend plant quality and increase plant 
resistance to adverse conditions (Mostofa et al., 
2018; Gao et al., 2025). Organic acids can not only 
reduce water evaporation from crops by regulating 
stomatal opening to enhance their drought resis-
tance, but also reduce the toxic effects of saline-
alkali on crops(Panchal et al., 2021).

Screening of metabolic pathways and 
analysis of salt resistance mechanisms

In this study, four out of 20 metabolic path-
ways were selected, and metabolites related to 
salt resistance were precisely screened on each 
pathway, mainly amino acid polypeptide com-
pounds, including Arginine-threonine-lysine-ar-
ginine polypeptide, histidine leucine polypeptide, 
N-L-histidine L-leucine polypeptide, arginine-
isoleucine-threonine-valine-lysine polypeptide, 
NA-serine derivatives, etc. Amino acid peptides, 
as an important biostimulant, play a significant 
role in enhancing plant resistance, eliminating re-
active oxygen species (ROS) antioxidant effects, 
activating plant defense responses through signal 
transduction. Amino acid peptides can also serve 
as carriers to help plants better absorb mineral ele-
ments, especially trace elements, which is crucial 
for enhancing plant resistance (Cao et al., 2025). 
The application of serine is mainly reflected in 
plant growth regulation. Serine derivatives can 
not only promote the growth and development of 
plants, but also enhance the drought resistance and 
cold resistance of plants (Clemente et al., 2019). In 
addition, polyamines (PA), a class of small nitro-
gen-containing compounds, are widely present in 
plants, mainly including humidines, spermidines 
and spermidines, enhance plant salt tolerance by 
regulating ion balance, antioxidant defense and 
other pathways (Amiri et al., 2024). Research has 
found that with increasing in phosphatidylcholine 
(PC) content, the absorption of Na + and excretion 
of K + in wheat decreased, which means that ionic 
toxicity reduced and thus could better resist to salt 

stress (Farooq et al., 2024; Wang et al., 2024). Few 
reports considered that lupanol might indirectly 
enhance the salt resistance of plants by eliminating 
reactive oxygen species or increasing the activity 
of antioxidant enzymes to protect cell membranes 
from oxidative damage (Makhubu et al., 2024).

CONCLUSION 

This study preliminarily verified the effect of 
nano-iron on improving the growth traits of flax 
from saline-alkali land. After nano-iron treatment, 
the emergence rate, seedling preservation rate and 
root thickness of flax grown on saline-alkali land 
increased by more than 20%, and the stem thick-
ness also increased by 6.9%. 15 upregulated me-
tabolite related to flax salt resistance were screened, 
including amino acids and their derivatives, ke-
tones, lactones, etc, which played an important role 
in enhancing plant stress resistance. Four out of 20 
metabolic pathways were screened and then pre-
cisely screened metabolites related to salt tolerance 
on each pathway. Five metabolites were screened 
on the amino acid metabolic pathway; Two metab-
olites such as PA and PC screened for lipid metabo-
lism synthesis pathway; One lupanol screened for 
sesquiterpene and triterpene bioanabolic pathways; 
One metabolite of dihydroxydecanoate screened 
for alcohol bioanabolic pathways.
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