
424

INTRODUCTION 

Urbanization has catalyzed unprecedented 
growth in vehicular traffic, positioning the trans-
portation sector as a leading contributor to global 
air pollution and climate change. Urban roads 
are the vector for pollutants spreading, including 
aerosols (Piotrowicz and Polednik, 2019). Vehi-
cles account for 20–30% of urban nitrogen oxide 
(NOx) emissions (vizen, 2025) and 15% of global 
CO₂ emissions (US EPA, 2016), exacerbating re-
spiratory illnesses, acid rain, and global warming. 
While cities strive to meet air quality standards 
set by the World Health Organization (WHO) and 

the Paris Agreement, traditional emission inven-
tories often rely on outdated or aggregated traf-
fic data, such as annual vehicle kilometers trav-
eled (VKT) or static fleet composition estimates. 
These methods lack the granularity to capture 
real-world driving patterns, such as stop-and-go 
traffic, speed fluctuations, and the growing prev-
alence of electric and hybrid vehicles. Conse-
quently, policymakers face significant uncertainty 
in designing targeted interventions, from conges-
tion pricing to low-emission zones.

This study addresses a critical research gap: 
the need for high-resolution, real-world traffic data 
to refine emission models and quantify the efficacy 
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of traffic management strategies. While automat-
ed traffic monitoring systems like MetroCount’s 
RoadPod (Mararo et al., 2015; Segarra-Morales 
and Moreno, 2024),TIRTL sensors (Li et al., 2010) 
and Lidar and CCTV technologies (Ansariyar et 
al., 2024; Guan et al., 2023; Peppa et al., 2021) 
have revolutionized data collection, their integra-
tion with emission modeling frameworks remains 
underexplored. This paper proposes a novel frame-
work to estimate emissions using MetroCount’s 
vehicle classification, speed profiles, and axle-
weight data, validated against established models 
like COPERT and MOVES. By correlating traffic 
dynamics with pollutant outputs, the study demon-
strates how data-driven strategies, such as signal 
optimization and freight route management, can 
reduce emissions by up to 25% in urban corridors. 
The findings aim to empower cities to align traffic 
management with sustainability goals, offering a 
blueprint for cleaner, smarter mobility.

The evolution of traffic monitoring has tran-
sitioned from labor-intensive manual counts to 
automated systems capable of capturing high-
resolution data. Early methods relied on human 
observers tallying vehicles at intersections, a pro-
cess prone to human error and limited to short-
term studies. The advent of inductive loop detec-
tors in the 1960s enabled continuous counting but 
lacked vehicle classification capabilities. Modern 
systems, such as MetroCount’s pneumatic tubes 
and Weigh-in-Motion (WIM) sensors (Adresi et 
al., 2024), classify vehicles by axle spacing and 
weight, while AI-powered cameras extract speed 
and acceleration data with high accuracy (Fathima 
et al., 2025; Gautam et al., 2025; N et al., 2023). 
For instance, a recent investigation (Segarra-Mo-
rales and Moreno, 2024) compared Bushnell radar 
gun and MetroCount MC5600 pneumatic counter 
measurements on an Ecuadorian rural road, finding 
radar gun readings averaged 48.127 km/h versus 
43.579 km/h for the pneumatic counter, with opti-
mal radar positioning determined at 80 meters dis-
tance after cosine effect corrections for the 3.5 m 
perpendicular offset. Similarly, LiDAR-equipped 
drones now supplement ground sensors in com-
plex urban networks, offering 3D traffic flow visu-
alization (Cherif et al., 2023; Gurung, 2025).

Vehicle emission estimation and prediction 
are inherently complex. However, models and 
techniques were extensively used and adapted for 
context-specific circumstances. Some emission 
models translate traffic data into pollutant outputs 
using factors derived from laboratory testing or 

on-road measurements. For instance, (Wei et al., 
2021) investigated traffic pollution in Hong Kong 
using bus-mounted mobile sensors, revealing 
that NO and NO2 were predominantly from local 
sources (72–84% and 58–71% respectively) while 
PM2.5 and CO were mainly from background 
sources (55–65% and 73–79%), with highest pol-
lutant concentrations clustering around tunnel 
entrances and congested areas, suggesting limi-
tations in existing Low Emission Zone policies 
that focus solely on large buses. Other emission 
models are regulatory by nature. For instance, the 
COPERT model (COmputer Programme to cal-
culate Emissions from Road Transport), widely 
adopted in Europe, estimates emissions based 
on vehicle categories, fuel types, and speed pro-
files In contrast, the U.S. Environmental Protec-
tion Agency’s MOVES (Motor Vehicle Emission 
Simulator) incorporates localized traffic and me-
teorological data, while the IVE model (Interna-
tional Vehicle Emissions) focuses on developing 
countries with heterogeneous fleets (Kawsar et 
al., 2024; Saberiyansani et al., 2025; Xu et al., 
2021). The COPERT, IV and MOVES models 
stem their successful implementation from their 
simplicity, scalability, and suitability for data-
scarce regions. An alternative to above modeling 
tools, PEMS (Portable Emission Measurement 
System) and laboratory-based measurement sys-
tems provide real-world, on-road emission mea-
surements (Giechaskiel et al., 2021; Matsuoka et 
al., 2025; Rymaniak et al., 2023). While PEMS 
delivers high-accuracy, vehicle-specific data ideal 
for validation and real-world compliance testing, 
its high cost and limited sample size contrast with 
MOVES and COPERT’s ability to generate fleet-
wide emission inventories and future scenarios, 
though these models rely on assumptions and av-
erage data that may not fully capture local driving 
conditions or vehicle-specific variations. 

These latter models are widely used in urban 
planning and policy-making due to their reli-
ance on readily available input data, such as traf-
fic volume, vehicle classification, and average 
speeds, making them ideal for mid-sized cities 
like Arar, where detailed on-road emission mea-
surements or advanced monitoring infrastructure 
may be limited. Emission factors, a cornerstone 
of these models, need to be calibrated using peer-
reviewed studies in similar contexts to reflect 
local driving conditions and vehicle fleets. For 
instance, higher nitrogen oxide (NOₓ) emission 
factors were assigned to diesel trucks, reflecting 
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their disproportionate contribution to NOₓ pollu-
tion, while carbon monoxide (CO) spikes during 
idling are proved to occur at the signalized inter-
sections. The calculation framework followed a 
standard gross emission formula: Emission (g/
km) = Traffic Volume × Emission Factor × Av-
erage Speed Adjustment, where traffic volumes 
from automated count systems like Metrocount 
and camera-based systems were multiplied by 
pollutant-specific emission factors (differentiated 
by vehicle type) and adjusted for average speeds 
derived from observed driving patterns (e.g., 
stop-and-go delays). 

The aim of the current study is to provide a case 
study of car emission estimation for a mid-size city 
experiencing rapid urban growth. Similar studies 
for Saudi cities, whichever medium or large, are up 
the author’s best knowledge scarce or non-not yet 
conducted. The analysis focused on four key pol-
lutants: carbon dioxide (CO₂), a major greenhouse 
gas; CO, indicative of incomplete combustion; 
NOₓ, linked to respiratory illnesses; and particu-
late matter (PM), a critical pollutant affecting air 
quality and public health. By integrating localized 
data with established modeling frameworks, this 
approach balances computational efficiency with 
contextual accuracy, providing actionable insights 
for urban areas facing rapid traffic growth and lim-
ited emission monitoring capabilities. 

For instance, this study examines vehicular 
emissions along a major arterial road in Arar, 
Saudi Arabia, where rapid urbanization and in-
creasing vehicle usage have raised air quality 
concerns. The research primarily investigates the 
performance of gross emission estimation models 
for vehicular emissions, focusing on quantifying 
CO₂, CO, NOₓ, and PM2.5 emissions at two stra-
tegic survey points: an entry point and a signal-
ized intersection. The study’s objectives include 
comparing the results with standard guidelines 
and analyzing the impacts of traffic volume. It 
also acknowledges limitations related to the gross 
estimation approach and data availability, partic-
ularly within the rapidly developing urban con-
text of the study area

MATERIALS AND METHODS

Study area

Arar, a rapidly expanding urban center in 
northern Saudi Arabia, serves as the capital of 

the Northern Border Region and plays a pivotal 
role in regional trade and transportation due to its 
proximity to the Saudi-Iraqi border. With a cur-
rent population of 219,079 and a projected annual 
growth rate of 1.7%, the city is expected to sur-
pass 283,300 residents by 2030, driven by eco-
nomic diversification and infrastructure develop-
ment under Saudi Vision 2030. This growth has 
intensified urban sprawl, resulting in a distinct 
spatial divide: densely populated southern zones 
(150–200 people/km²), characterized by mixed-
use residential, commercial, and administrative 
hubs, and sparsely populated newly created and 
peripheral areas (0–30 people/km²), dominated 
by newly developed estates and undeveloped 
land. This demographic and spatial duality shapes 
traffic patterns, with the city’s road network - par-
ticularly King Abdulaziz Road - acting as a criti-
cal artery to accommodate both local commuter 
traffic and transnational freight. Stretching 3.7 
km from south to north, King Abdulaziz Road 
connects Arar’s historic downtown core to the 
Saudi-Iraq Highway (No. 80), a vital corridor for 
trade and cross-border movement and Highway 
85 running from Saudi eastern region to Jordan 
border towards the West. The road’s dual function 
as a commuter and freight corridor generates high 
daily traffic volumes, exacerbated by daily and 
seasonal peaks during holidays and trade cycles, 
while its aging infrastructure struggles to meet 
the demands of a growing vehicle fleet (Figure 1). 

To analyze vehicular emissions under con-
trasting traffic regimes, two strategic monitor-
ing points were selected along this corridor. The 
first is Point A, located at the southern entry point 
(30°58’09.4”N 41°00’55.1”E). It represents free-
flow traffic conditions, where vehicles transition 
into the road at steady speeds with minimal in-
terruptions, offering insights into baseline emis-
sions during acceleration and cruising phases. 
The second survey Point B is a signalized inter-
section at the northern terminus (30°59’05.5”N 
41°01’18.3”E). Point B experiences intermittent 
congestion due to merging traffic from secondary 
arterials, commercial zone access, and frequent 
stops at traffic signals, creating stop-and-go dy-
namics that amplify idling-related emissions. The 
selection of these points enables a granular com-
parison of emission profiles influenced by traffic 
behavior, steady-state driving versus stop-start 
conditions, while highlighting the impact of in-
frastructure design and traffic management on ur-
ban air quality. Furthermore, the study’s findings 
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hold relevance for mid-sized cities across the Gulf 
Cooperation Council (GCC) region facing similar 
challenges of rapid urbanization, traffic growth, 
and the need to align mobility policies with sus-
tainability targets outlined in national agendas 
like Saudi Vision 2030 (Figure 2).

Data collection procedure

The data collection for traffic volume counts 
was conducted using a combination of automated 
sensors and observational tools tailored to the 

distinct traffic dynamics at the two monitoring 
points. At Point A (free-flow entry), Metrocount 
RoadPod 4 piezoelectric sensors were deployed 
to capture vehicle counts, speeds, and basic axle-
based classification over a 72-hour period from 
Sunday, December 22, 2024, 11:00 AM to Wednes-
day, December 25, 2024, 11:00 AM. In contrast, 
Point B (signalized intersection) utilized a hybrid 
system integrating Metrocount sensors with cam-
era-based systems (e.g., video analytics) to enable 
detailed vehicle classification (cars, trucks, buses, 
motorcycles) and real-time observation of traffic 

Figure 1. Study Area: location of the arterial King Abdulaziz Road and street view photo at peak evening hour 
using aerial satellite photos (© Google Maps)

Figure 2. Locations of the traffic count points A (30°58’09.4”N 41°00’55.1”E)
and B (30°59’05.5”N 41°01’18.3”E) using aerial satellite photos (© Google Maps)
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behavior, such as idling duration and acceleration/
deceleration patterns, over a longer 96-hour span 
from Wednesday, December 25, 2024, 11:00 AM 
to Sunday, December 29, 2024, 11:00 AM. Both 
datasets were structured into 15-minute temporal 
bins, aggregated into hourly intervals as per the 
“Weekly Vehicle Counts Report,” and designed to 
capture variations across peak hours (7:00–9:00 
AM, 5:00–7:00 PM), off-peak hours (12:00–3:00 
PM, 10:00 PM–5:00 AM), and weekday/week-
end cycles. Parameters included vehicle counts, 
classification, speed, and, for Point B, behavioral 
metrics critical for emission modeling under stop-
and-go conditions. Data cleaning involved auto-
mated outlier removal (e.g., implausible speeds), 
calibration standardization between sensor types, 
and cross-validation of camera-based classifica-
tions against Metrocount axle data to ensure ac-
curacy. Missing data gaps (<30 minutes) were 
filled via linear interpolation, while longer gaps 
were excluded. This multi-layered approach en-
sured high-resolution, context-specific insights 
into traffic dynamics, enabling robust emission 
estimation for contrasting flow regimes while ad-
dressing potential biases in sensor reliability and 
classification errors (Figure 3).

Vehicle emission estimation models

To estimate vehicular emissions along King 
Abdulaziz Road in Arar, this study employed 
gross emission models such as COPERT IV and 
MOVES, selected for their simplicity, scalabil-
ity, and suitability for data-scarce regions. These 
models are widely used in urban planning and 
policy-making due to their reliance on readily 
available input data, such as traffic volume, ve-
hicle classification, and average speeds, making 
them ideal for mid-sized cities like Arar, where 
detailed on-road emission measurements or ad-
vanced monitoring infrastructure may be lim-
ited. Emission factors, a cornerstone of these 
models, were adapted from peer-reviewed stud-
ies in similar Middle Eastern contexts to reflect 
local driving conditions and vehicle fleets. For 
instance, higher NOₓ emission factors were as-
signed to diesel trucks, reflecting their dispro-
portionate contribution to NOₓ pollution, while 
CO spikes during idling at the signalized inter-
section (Point B) were explicitly accounted for. 
The calculation framework followed a standard 
gross emission formula:

	 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ( 𝑔𝑔
𝑘𝑘𝑘𝑘) =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 ×  

×  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ×  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

 

𝑉𝑉𝑉𝑉𝑉𝑉 =  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ×  
×  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ (𝑘𝑘𝑘𝑘) 

 

 

	(1)

Where traffic volumes from Metrocount and 
camera-based systems were multiplied by pol-
lutant-specific emission factors (differentiated by 
vehicle type) and adjusted for average speeds de-
rived from observed driving patterns (e.g., stop-
and-go delays at Point B). The analysis focused 
on four key pollutants: CO₂, a major greenhouse 
gas; CO, indicative of incomplete combustion; 
NOₓ, linked to respiratory illnesses; and particu-
late matter (PM), a critical pollutant affecting air 
quality and public health. By integrating localized 
data with established modeling frameworks, this 
approach balances computational efficiency with 
contextual accuracy, providing actionable in-
sights for urban areas facing rapid traffic growth 
and limited emission monitoring capabilities.

RESULTS AND DISCUSSION

Traffic volume

The two traffic count points (A and B) were 
strategically placed on the same arterial road to 
ensure full weekday coverage. Indeed, Point A 
covered Sunday to Wednesday. While Point B 
(located in Arar’s core commercial area) spanned 
Wednesday to Sunday, capturing both weekdays 
and weekend days (Friday-Saturday in Saudi Ara-
bia). This design ensures a representative sample 
of traffic patterns throughout the entire week and 
is suitable for a pilot study that will inform wider 
scope investigation (Figure 4). 

The traffic volume data from Point A (free-
flow entry) on King Abdulaziz Road in Arar 
reveals pronounced diurnal and weekly traffic 
patterns. It directly informs emission estimation 
dynamics. Morning rush hours (07:00–09:00) 
consistently recorded 539–593 vehicles/hour, 
peaking at 611 vehicles/hour on Wednesday 
(08:00–09:00), driven by commuter inflows into 
Arar’s downtown core. Evening peaks (17:00–
19:00) were even more intense, with 922–996 ve-
hicles/hour, including 996 vehicles/hour on Tues-
day (17:00–18:00), likely exacerbated by freight 
movements and post-work travel. These peaks 
highlight heightened emission risks from acceler-
ation/deceleration cycles, despite free-flow con-
ditions. Nighttime traffic (00:00–05:00) plum-
meted to 52–78 vehicles/hour, reflecting minimal 
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nocturnal activity, while midday volumes (e.g., 
922 vehicles/hour on Monday at 12:00–13:00) 
dipped on Tuesday (790 vehicles/hour), possibly 
due to reduced commercial activity or unrecorded 
disruptions (Figure 5). 

Weekday traffic (Monday-Wednesday) main-
tained high daytime volumes (e.g., 8.817–8.997 
vehicles/12 hours between 07:00–19:00). Sharp 
contrast was identified during weekends: Sunday 
saw 246–972 vehicles/hour, such as 246 vehicles/
hour at 10:00–11:00, underscoring reduced eco-
nomic and commuter activity on weekends. An 
anomalous Wednesday mid-morning drop (151 
vehicles/hour, 10:00–11:00), compared to Mon-
day’s 743 vehicles/hour, suggests a potential sen-
sor error or unrecorded event, though missing 
data for Thursday-Saturday limits full weekly 
trend validation. Despite gaps, weekday averages 
remain robust for modeling, emphasizing com-
muter and freight dominance in emission pro-
files. These findings underscore the necessity of 
hour-specific emission factors, as even free-flow 
corridors exhibit significant temporal variability, 
with peak-hour traffic disproportionately driving 

pollution. Targeted mitigation during evening 
rush hours and weekday planning could yield 
measurable air quality improvements in Arar’s 
growing urban core.

The traffic volume data from Point B (signal-
ized intersection) on King Abdulaziz Road in Arar 
highlights intense congestion and stop-and-go 
dynamics. This results in critical implications for 
emission hotspots. Morning rush hours (07:00–
09:00) exhibited 765–854 vehicles/hour, peaking 
at 831 vehicles/hour on Sunday (13:00–14:00). 
This is driven by commuter inflows and merging 
traffic from secondary arterials. Evening peaks 
(17:00–19:00) were markedly higher, reaching 
972 vehicles/hour on Sunday (18:00–19:00). this 
can be explained by vehicles queued at the sig-
nalized intersection created prolonged idling and 
acceleration/deceleration cycles. Unlike Point A’s 
free-flow patterns, midday traffic at Point B re-
mained elevated (702–972 vehicles/hour. Night-
time volumes (00:00–05:00) dropped sharply 
to 516–671 vehicles/hour, though still 10–20% 
higher than Point A due to residual freight traf-
fic. Weekday vs. weekend comparisons revealed 

Figure 3. Field technicians deploying a hybrid traffic data collection system: Installation
of MetroCount RoadPod VT4 pneumatic tubes for vehicle classification and counting, complemented

by overhead camera monitoring for comprehensive intersection movement analysis and validation

Figure 4. Periods of the traffic count showing temporal continuity and patterns similarity 



430

Journal of Ecological Engineering 2026, 27(2), 424–439

mixed trends: Monday-Wednesday saw steady 
peaks (e.g., 892–944 vehicles/hour at 20:00–
21:00), while Saturday-Sunday showed 20–30% 
reductions during midday but sustained evening 
congestion (e.g., 884–965 vehicles/hour at 18:00–
20:00), suggesting persistent freight and internal 
activity. Anomalies included a Wednesday mid-
day spike (972 vehicles/hour, 12:00–13:00), pos-
sibly linked to signal timing adjustments, and a 
Thursday mid-afternoon dip (677 vehicles/hour, 
14:00–15:00), potentially due to temporary road-
works. Missing data for Thursday-Saturday limit 
full trend analysis, but the observed patterns 
underscore Point B’s role as a critical emission 
hotspot. The frequent idling and acceleration/
deceleration cycles amplify CO and PM emis-
sions despite similar weekday traffic volumes to 
Point A. These findings emphasize the need for 
intersection-specific mitigation strategies, such as 
adaptive signal control or low-idling zones, to ad-
dress the disproportionate pollution generated in 
stop-and-go conditions (Figure 6).

The traffic and emission dynamics at Point A 
(free-flow entry) and Point B (signalized inter-
section) on King Abdulaziz Road in Arar reveal 
stark contrasts in urban mobility and pollution 
drivers. Point A exhibited moderate, commuter-
dominated traffic with predictable morning (611 
vehicles/hour) and evening (996 vehicles/hour) 
peaks, dropping sharply on weekends due to re-
duced residential activity. Emissions here were 
proportional to traffic volume, with NOₓ and PM 
elevated during acceleration phases but lower CO 
spikes due to minimal idling. In contrast, Point 
B emerged as a congestion hotspot, with higher 

sustained volumes (peaking at 972 vehicles/hour) 
driven by merging freight, industrial traffic, and 
signal-induced stop-and-go cycles. Weekend ac-
tivity at Point B declined less (20–30%) than Point 
A, underscoring its role in cross-border freight. 
Emissions here were disproportionately ampli-
fied: prolonged idling and frequent acceleration/
deceleration cycles led to elevated CO and PM 
levels, even with similar weekday traffic volumes.

Traffic composition

Analysis of the traffic composition shows that 
both Point A and Point B are predominantly char-
acterized by passenger vehicles (SV), accounting 
for approximately 94% of total traffic at each loca-
tion (38,827 out of 41,164 at Point A and 36,511 
out of 39,265 at Point B). The second most fre-
quent vehicle type is 2-axle rigid trucks (TB2), 
with around 1.570 vehicles at both points. Notable 
differences between the points include higher mo-
torcycle (MC) counts at Point B (101 vs 36) and 
a greater presence of 3‑axle rigid trucks (T3) at 
Point B (404 vs 183). Heavy vehicle movements 
are also more frequent at Point B, as indicated by 
the higher numbers of 6‑axle articulated trucks 
(ART6: 71 vs 33) and road trains (DRT: 49 vs 5). 
This suggests Point B may be more connected to 
freight routes while Point A appears to serve pri-
marily urban passenger traffic (Figure 7) (Table 1).

The vehicle classification data from both sur-
vey points reveals a heavily passenger vehicle-
dominated traffic composition. The Class 2 (stan-
dard passenger vehicles) comprises over 93% of all 
traffic at both locations. Point A shows 94.3% Class 

Figure 5. Traffic Counts at point A over a 72-hour period from Sunday, December 22, 2024, 11:00 AM
to Wednesday, December 25, 2024, 11:00 AM
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2 vehicles while Point B has 93%. The remaining 
distribution primarily consists of Class 4 vehicles 
(likely light commercial vehicles) at approximately 
3.8–4% for both points. There are minimal dif-
ferences between the two points. Indeed, Point B 
shows slightly higher percentages of Class 5 vehi-
cles (1% vs 0.4%) and marginally higher represen-
tation of heavier vehicle classes. From an emissions 
perspective, this distribution suggests that pas-
senger vehicle emission factors will dominate the 

overall emission inventory. The small but signifi-
cant presence of commercial and heavier vehicles 
(Classes 4–12) should be accounted for as these 
vehicles typically have higher per-vehicle emission 
rates despite their lower numbers in the fleet.

Speed profiles

The speed distribution data from two moni-
toring points (A and B) shows a classical urban 

Figure 6. Traffic Counts at point B over a longer 96-hour span from Wednesday, December 25, 2024, 11:00 AM 
to Sunday, December 29, 2024, 11:00 AM

Table 1. Traffic composition at both Point A and Point B according to ARX classification for the full survey 
periods at point A and point B, Arar city

Point Total MC SV SVT TB2 T3 T4 ART3 ART4 ART5 ART6 BD DRT

Point A 41,164 36 38,827 211 1.576 183 57 16 193 25 33 2 5

Point B 39,265 101 36,511 238 1.570 404 81 23 190 20 71 7 49

Note: MC – Motorcycle, SV – Passenger Car, SVT – Car with Trailer, TB2 – 2 Axle Rigid Truck,
T3 – 3 Axle Rigid Truck, T4 – 4 Axle Rigid Truck, ART3 – 3 Axle Articulated Truck,
ART4 – 4 Axle Articulated Truck, ART5 – 5 Axle Articulated Truck, ART6 – 6 Axle Articulated Truck,
BD – B-Double, DRT – Double/Road Train.

Figure 7. Distribution of vehicle classifications at Points A and B according to ARX classification system, 
showing predominance of Class 2 (passenger vehicles) at both locations 
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traffic pattern with the majority of vehicles op-
erating between 25–40 km/h. A peaking was re-
corded at 30–40 km/h for Point A (approximately 
27%) and 25–30 km/h for Point B (about 26%). 
Point A demonstrates a slightly higher propor-
tion of faster speeds (35–45 km/h) compared to 
Point B, while Point B shows higher percentages 
in lower speed ranges (10–25 km/h), suggesting 
different road or traffic conditions between the 
two locations. This speed distribution pattern 
has direct implications for vehicle emissions. 
Indeed, vehicles typically produce higher emis-
sions during low-speed stop-and-go traffic (below 
20 km/h) due to inefficient engine operation and 
frequent acceleration/deceleration cycles. The 
predominant mid-range speeds (25–40 km/h) 
generally represent more optimal operating con-
ditions with lower per-kilometer emissions. This 
is though actual emission rates would also depend 
on other factors such as road grade, vehicle type, 
and driving behavior (Figure 8). 

Emission factors

Emission factors in vehicle emission models 
are inherently complex due to their dependence 
on multiple variables including vehicle character-
istics, driving conditions, meteorological factors, 
and fuel properties, making accurate estimation 
challenging (Zhong et al., 2024). To address un-
certainties, researchers have employed various 
approaches such as Monte Carlo simulations (Lee 
and Park, 2024), sensitivity analyses (Chen et al., 
2024), fuzzy logic methods (He et al., 2025), and 
probabilistic frameworks that incorporate confi-
dence intervals and error propagation techniques. 

These uncertainty quantification methods help 
account for variabilities in input parameters, mea-
surement errors, and model assumptions, though 
the complex interactions between factors like en-
gine load, ambient temperature, vehicle mainte-
nance, and driving behavior continue to present 
challenges in achieving high prediction accuracy 
across different operational scenarios. 

Local meteorological conditions were incor-
porated to contextualize emission dispersion and 
vehicle performance. The climate features signifi-
cant seasonal temperature variations, from winter 
lows of ~5 °C to summer highs of ~41 °C. These 
extremes directly influence emissions: colder 
temperatures increase cold-start emissions, while 
summer heat elevates loads from air conditioning 
use. Consequently, the emission adjustments im-
plicitly account for these temperature-dependent 
effects. Furthermore, the wind regime is charac-
terized by consistent north/northwesterly flows 
with moderate speeds (predominantly 20–30 
km/h), which governs the predominant down-
wind dispersion of pollutants. This wind pattern 
was considered in interpreting the spatial impact 
of emissions but was not used to adjust the emis-
sion factors themselves (Figure 9).

The estimation of vehicle emissions in this 
research relies on established emission factors 
(EFs) derived from existing literature (Gao et 
al., 2022; Perdikopoulos et al., 2025; Sirithian 
et al., 2022), COPERT, MOVES regulatory mo-
dels (Liu et al., 2023; Sun et al., 2023; Xu et 
al., 2023) and published research work data (Ye 
et al., 2025). While these values serve as refer-
ence points for illustrative purposes, they may 
not fully capture the unique characteristics of 

Figure 8. Vehicle speed distribution comparison between Point A and Point B, showing percentage frequency 
across speed ranges from 5 to 80 km/h
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Saudi Arabia’s context. Site-specific calibra-
tion studies are essential for medium and large 
Saudi cities, considering the region’s distinctive 
climatic conditions, fleet composition, emission 
regulations, and other local parameters that sig-
nificantly influence emission patterns. Future 
research should prioritize comprehensive field 
measurements to develop and validate emission 
prediction models that accurately reflect Saudi 
Arabia’s transportation ecosystem. 

 The application of emission factors in this 
study incorporated adjustments for key regional 
characteristics, namely fuel standards, high am-
bient temperatures, and an aged vehicle fleet, 
through specific uplift factors. It is critical to 
note, however, that these adjustments introduce 
a significant layer of uncertainty, as the chosen 
uplifts (+15% for passenger cars, +12% for light 
commercial veicles, +10% for trucks, and +8% 
for buses) are expert estimates based on a quali-
tative synthesis of literature rather than locally 
validated coefficients. Consequently, while this 
approach provides a necessary first-order ap-
proximation for the Saudi context, the resulting 

emission estimates are inherently uncertain. This 
primary uncertainty, stemming from the use of 
non-localized emission factors, is compounded 
by other limitations including the temporal rep-
resentativeness of traffic data, the documented 
accuracy margins of the PM₂.₅ sensors, and the 
use of typical rather than highly resolved meteo-
rological data in dispersion modeling (Table 2).

Emission estimates

The traffic composition analysis reveals a 
predominantly passenger car-oriented traffic 
flow, with passenger vehicles constituting ap-
proximately 94% (Point A) and 93% (Point B) 
of total daily traffic. Light commercial vehicles 
form the second largest category at about 4–5% 
of total flow, while heavy-duty trucks represent 
only 1–2% of traffic volume. The notably low bus 
traffic (less than 0.1% at Point A and 0.14% at 
Point B) suggests limited public transport service 
in the surveyed area. Point A experiences higher 
overall traffic volumes with 13,720 vehicles per 
day compared to Point B’s 9.818, though Point B 

Figure 9. (a) Annual temperature regime showing mean daily maximum and minimum temperatures, hot days, 
cold nights, and precipitation patterns at the study area. Annual wind regime displaying monthly

wind speed distribution (stacked bars, left) and directional frequency (wind rose, right) at the study area.
(b) Wind speeds categorized in ranges from 5–10 km/h to >50 km/h. Data source: MeteoBlue
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shows slightly higher proportions of heavy vehi-
cles and buses, possibly indicating different land 
use patterns or route preferences for commercial 
traffic. The distribution of the ADT by vehicle 
category is obtained and provided (The transla-
tion of aggregated traffic counts (Table 1) to Aver-
age Daily Traffic (ADT) data yields:
	• Point A: ADT = Total count / (72/24) = 41,164 

/ 3 = 13,721 vehicles/day
	• Point B: ADT = Total count / (96/24) = 39,265 

/ 4 = 9.816 vehicles/day (Table 3)

The translation of aggregated traffic counts 
(Table 1) to average daily traffic (ADT) data yields:
	• Point A: ADT = Total count / (72/24) = 41,164 

/ 3 = 13,721 vehicles/day
	• Point B: ADT = Total count / (96/24) = 39,265 

/ 4 = 9.816 vehicles/day

Furthermore, the daily average traffic speeds 
are computed using the speed matrix for the sur-
vey point A and B. For illustrative purposes, the 
computation details at the signalized intersection 
are presented below and summarized in Table 4:
	• Passenger Cars (Class 2) = SV only: Weighted 

average = 44.1 km/h
	• Light Commercial (Class 3–4) = SVT + TB2: 

Weighted average = 41.5 km/h
	• Heavy-Duty Trucks (Class 5–8) = TB3 + T4 + 

ART3 + ART4: Weighted average = 29.9 km/h
	• Buses (Class 9–12) = ART5 + ART6 + BD + 

DRT: Weighted average = 35.9 km/h

The daily average speed data (Table 4) shows 
consistently higher speeds at Point A across all 
vehicle categories, with the most pronounced 
difference observed in heavy-duty trucks (19.7 
km/h faster at Point A). Other vehicle categories 
show speed differences of 9–11 km/h, suggest-
ing significantly better traffic flow conditions at 
Point A compared to Point B.

In mileage-based vehicle emission estimation 
models, the emission factors increase outside an 
optimal speed range characteristic of the vehicle 
category. To account for speed variability impact 
on emissions, Table 4 presents speed correction 
factors (SCFs) provided based on the optimal 
range of each vehicle category:
	• Passenger cars: Optimal range centered around 

60 km/h for urban arterials
	• Light commercial: Slightly lower optimal 

range due to vehicle weight/mechanics
	• Heavy trucks/buses: Lower optimal range con-

sidering vehicle dynamics and urban operations

The SCFs show moderate corrections need-
ed at Point A where speeds are close to optimal 
ranges. Point B still requires higher corrections, 
especially for heavy vehicles, but the factors are 
more aligned with real-world vehicle perfor-
mance characteristics.

For the survey point B as an example, the 
results yield a typical speed hierarchy: passen-
ger cars operating at the highest speeds (44.1 
km/h), followed by light commercial vehicles 
(41.5 km/h), buses (35.9 km/h), and heavy-duty 
trucks maintaining the lowest average speeds 
(29.9 km/h), which better reflects typical urban 
traffic patterns and vehicle operational character-
istics. Using a unit traveled distance, Vehicle Ki-
lometers Traveled (VKT) is calculated using the 
equation below (Ishak et al., 2022; Mun and Jung, 
2025; Park and Park, 2024; Patiño-Aroca et al., 
2022) and summarized in Table 5.

	

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ( 𝑔𝑔
𝑘𝑘𝑘𝑘) =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 ×  

×  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ×  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

 

𝑉𝑉𝑉𝑉𝑉𝑉 =  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ×  
×  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ (𝑘𝑘𝑘𝑘) 

 

 

	 (2)

To compute the estimates of emissions in-
duced by the traffic at selected count points, the 
results are consolidated using the previous results 
presented in Table 2, Table 4, Table 5 and Table 6.

Table 2. Emission factors used to estimate the vehicle emission estimates from the traffic data at Arar city
Vehicle Category Scenario CO₂ CO NOₓ PM₂.5

Passenger Cars 
(Class 2)

Baseline (Publication-Regulations) 170–180 1.10–1.20 0.20–0.25 0.004–0.005

Adjusted - Saudi Arabia 195 1.38 0.29 0.006

Light Commercial 
(Class 3-4)

Baseline (Publication-Regulations) 210–225 1.50–1.60 0.30–0.35 0.009–0.010

Adjusted - Saudi Arabia 235 1.68 0.34 0.011

Heavy-Duty Trucks 
(Class 5-8)

Baseline (Publication-Regulations) 600–650 3.80–4.00 3.80–4.20 0.045–0.050

Adjusted - Saudi Arabia 660 4.20 4.18 0.055

Buses (Class 9-12)
Baseline (Publication-Regulations) 870–920 4.70–5.00 4.60–5.00 0.070–0.080

Adjusted - Saudi Arabia 940 5.10 5.00 0.086
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Carbon dioxide (CO2)

CO2 emissions demonstrate strong correlation 
with traffic volume and vehicle type distribution, 
showing distinct patterns at both survey points. 
At Point A, passenger cars are the dominant con-
tributors (2.83M g/day/km), reflecting the high 
traffic volume (12,954 vehicles) and moderate 
speeds (53.4 km/h). Despite lower traffic volumes 
at Point B (9.153 passenger cars), the reduced 
speeds (44.1 km/h) result in disproportionately 
high emissions (2.23M g/day/km). Heavy trucks 
show an inverse pattern, with Point B emissions 
(196,614 g/day/km) significantly exceeding Point 
A (112,277 g/day/km) despite similar vehicle 
counts, primarily due to the speed differential 
(29.9 vs 49.6 km/h). Saudi Arabian factors con-
sistently yield 15–20% higher CO2 emissions 

compared to baseline scenarios, reflecting local 
fleet characteristics and operating conditions.

Carbon monoxide (CO)

CO emissions follow patterns similar to CO2 
but with more pronounced variations between 
vehicle categories and locations. Passenger cars 
at Point A emit 20,034 g/day/km compared to 
15,789 g/day/km at Point B, representing a small-
er proportional difference than CO2. Heavy vehi-
cles show particularly sensitive CO emission re-
sponses to speed variations, with Point B’s lower 
speeds resulting in notably higher emissions per 
vehicle. The - scenarios show 20–25% increases 
over baseline values, suggesting that local con-
ditions significantly impact incomplete combus-
tion processes that generate CO. The relationship 

Table 3. Average daily traffic (ADT) Distribution by vehicle category at two major survey points in Arar City, 
Saudi Arabia

Vehicle Category Survey Point A Count (24h) Survey Point B Count (24h)

Passenger Cars (Class 2) 12,954 9.153

Light Commercial (Class 3-4) 595 453

Heavy-Duty Trucks (Class 5-8) 168 198

Buses (Class 9-12) 3 14

Total 13,720 9.818

Table 4. Daily average traffic speeds by vehicle category at survey points A and B in Arar City
with speed correction factors (SCFs)

Vehicle category
Daily average speed (km/h) Speed correction factor (SCF)

Point A Point B (A-B) Optimal range Point A Point B

Passenger cars 53.4 44.1 +9.3 50–70 km/h 1.12 1.25

Light commercial 51.0 41.5 +9.5 45–65 km/h 1.08 1.20

Heavy-duty trucks 49.6 29.9 +19.7 40–60 km/h 1.01 1.50

Buses 46.5 35.9 +10.6 40–60 km/h 1.08 1.40

Table 5. Average daily traffic (ADT) distribution by vehicle category at two major survey points in Arar City, 
Saudi Arabia

Category
Survey Point A Survey Point B

Count (24h) Average Speed 
(km/h)

VKT (Count × 
Length) Count (24h) Average Speed 

(km/h)
VKT (Count × 

Length)
Passenger Cars 
(Class 2) 12,954 53.4 12,954 9.153 44.1 9.153

Light Commercial 
(Class 3–4) 595 51.0 595 453 41.5 453

Heavy-Duty Trucks 
(Class 5–8) 168 49.6 168 198 29.9 198

Heavy-Duty Trucks 
(Class 5–8) 3 46.5 3 14 35.9 14

Total 13,720 13,720 9.818 9.818
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between speed and CO emissions appears more 
complex than for CO2, particularly in the heavy 
vehicle categories.

Nitrogen oxides (NOx)

NOx emissions exhibit the most dramatic 
variations among pollutants, particularly for 
heavy vehicles. The - scenarios show substantial 
increases over baseline values (25–30%), reflect-
ing the sensitivity of NOx formation to local op-
erating conditions. At Point B, heavy truck NOx 
emissions (1.245 g/day/km) are significantly 
higher than at Point A (711 g/day/km), despite 
similar vehicle counts, demonstrating the criti-
cal impact of speed on NOx formation. Passen-
ger car NOx emissions show less dramatic but 
still significant variations between points (4.210 
vs 3.318 g/day/km), suggesting that light vehicle 
NOx emissions are less sensitive to speed varia-
tions than heavy vehicles.

Particulate matter (PM2.5)

PM2.5 emissions show the highest relative 
increases in adjusted scenarios compared to base-
line values, particularly for heavy vehicles. The 
speed impact is most pronounced in this pollut-
ant, with Point B’s lower speeds resulting in sig-
nificantly higher per-vehicle emissions, especial-
ly for heavy trucks (16.4 vs 9.4 g/day/km). Pas-
senger car PM2.5 emissions demonstrate notable 
differences between points (87.1 vs 68.6 g/day/
km). However, the relative impact of speed is less 
influencial than for heavy vehicles. The results 
suggest that PM2.5 emissions are particularly 

sensitive to both vehicle type and operating con-
ditions, with implications for air quality manage-
ment strategies in urban areas.

CONCLUSIONS

This study quantified traffic-induced emis-
sions at a free-flow corridor (Point A) and a signal-
ized corridor (Point B) in Arar city, Saudi Arabia, 
by combining one-week, 1-h traffic counts with 
locally-adjusted emission factors. Despite com-
parable daily traffic volumes, the presence of sig-
nal control fundamentally altered the emissions 
profile. At Point B, extended idling and repetitive 
acceleration/deceleration cycles during the morn-
ing (07:00–09:00) and evening (17:00–19:00) 
peaks elevated corridor-average CO and PM₂.₅ by 
65–75% relative to Point A. These findings cor-
roborate earlier micro-scale analyses that identify 
queuing as a primary determinant of urban road-
side pollution rather than absolute vehicle counts.

Although passenger cars constituted more 
than 93% of the fleet at both sites, a small cohort 
of heavy-duty trucks (smaller than 7% by num-
ber) proved responsible for a disproportionate 
share of regulated pollutants. At Point B, trucks 
contributed 1 245 g/day/km of NOₓ and 16.4 g/
day/km of PM₂.₅, values 75% and 74% higher, 
respectively, than those observed at the free-
flow site. The effect was amplified by mean truck 
speeds of only 29.9 km/h, well below the thresh-
old at which diesel after-treatment systems oper-
ate efficiently. These results confirm that targeted 
abatement of the heavy-duty segment can yield 

Table 6. Estimated emissions at survey point A and point B (g/day/km)

Category Scenario
Survey Point A Survey Point B

CO2 CO NOx PM2.5 CO2 CO NOx PM2.5

Passenger Cars

Baseline Low 2,466,726 15,997 2.908 58.2 1,943,516 12,604 2,291 45.8

Baseline High 2,611,712 17,451 3.635 72.7 2,057,430 13,750 2,863 57.2

Adjusted SA 2,830,305 20,034 4.210 87.1 2,232,206 15,789 3,318 68.6

Light Commercial

Baseline Low 134,865 963 193 5.8 114,156 815 163 4.9

Baseline High 144,498 1.027 225 6.4 122,310 869 190 5.4

Adjusted SA 150,754 1.079 218 7.1 127,674 914 185 6.0

Heavy Trucks

Baseline Low 101,808 644 644 7.6 178,200 1.128 1,128 13.4

Baseline High 110,292 678 713 8.5 193,050 1.188 1.247 14.9

Adjusted SA 112,277 714 711 9.4 196,614 1.250 1.245 16.4

Buses

Baseline Low 2,808 15.2 14.9 0.23 17,052 92.3 90.2 1.37

Baseline High 2,970 16.1 16.1 0.26 18,032 98.0 98.0 1.57

Adjusted SA 3,052 16.6 16.2 0.28 18,532 100.5 98.4 1.69
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outsized air-quality benefits, even in passenger-
car-dominated traffic streams.

Application of Saudi-specific uplifts (+15% 
for light-duty and +10–12% for heavy-duty ve-
hicles) raised default COPERT/MOVES baseline 
CO₂ emissions by up to 20% and NOₓ by up to 
30%. The magnitude of this adjustment under-
scores the necessity of regional calibration when 
transferring emission factors from temperate, 
high-income contexts to arid, high-temperature 
environments. Nonetheless, the absence of chas-
sis-dynamometer or PEMS validation data for the 
local fleet remains a critical source of uncertainty.

From a management perspective, the results 
advocate site-specific interventions rather than 
city-wide blanket measures. Adaptive signal con-
trol, dynamic peak-hour freight restrictions, and 
enforcement of Euro 6/VI standards for trucks 
at Point B are expected to reduce corridor-level 
PM₂.₅ by ~20% and NOₓ by ~25% under con-
servative uptake scenarios. Moreover, the high 
temporal resolution of the MetroCount data set 
facilitates the design of demand-responsive pric-
ing schemes or real-time driver information sys-
tems that smooth peak flows and restore average 
speeds above 50 km/h.

The analysis is constrained by three princi-
pal limitations: (i) missing weekend data (Thurs-
day–Saturday) precluded full characterization of 
weekly variability; (ii) the emission model did 
not explicitly incorporate meteorology, road gra-
dient, or cold-start effects; and (iii) Saudi-specific 
adjustment factors were inferred rather than em-
pirically derived. Future work should therefore 
extend temporal coverage, integrate IoT-based 
meteorological and exhaust sensors for online 
calibration, and employ dispersion modelling to 
link roadside emissions with population exposure.

In summary, the interaction of congestion 
dynamics and a minor heavy-duty sub-fleet de-
fines the dominant urban emission hotspots in 
Arar. The study demonstrates that granular traf-
fic monitoring, coupled with regionally adapted 
emission factors, can generate actionable insights 
for near-term air-quality improvement in rapidly 
motorizing Middle-Eastern cities.
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