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ABSTRACT

Rapid motorization in Saudi Arabia’s secondary cities is intensifying concerns about local air quality, yet empiri-
cal, corridor-scale emission data remain scarce. This study integrates high-resolution traffic counts with regionally
calibrated emission factors to characterize on-road pollutant loads along two arterial segments in Arar: (i) a free-
flow highway section (Point A) and (ii) an urban, signal-controlled intersection (Point B). Vehicle volumes and
classifications were recorded at 1-h resolution over seven consecutive days using MetroCount pneumatic sensors,
capturing 53,749 and 55,116 vehicles at Points A and B, respectively. Baseline emission factors were derived from
COPERT-6 and MOVES-5 models; to reflect local fleet age, fuel sulphury content and ambient temperatures, fac-
tors were uplifted by +15% for light-duty vehicles and +10-12% for heavy-duty vehicles. Despite similar traffic
volumes, congestion at Point B markedly elevated pollutant intensities. Average weekday peak-hour speeds fell
to 44.1 km/h for passenger cars and 29.9 km/h for heavy trucks, compared with 53.4 km/h and 42.7 km/h at Point
A. Consequently, Point B exhibited 75% higher heavy-truck CO: emissions (1.27 x 10° g/day/km) and increases
of 75% and 74% in NOx (1 245 g/day/km) and PMa.s (16.4 g/day/km), respectively, relative to Point A. Although
heavy-duty vehicles comprised less than 7% of the fleet, they accounted for = 50% of corridor-wide NOy and
PM..s. A review of mitigation strategies suggests that restoring average speeds above 50 km/h or rerouting Euro
VI-compliant trucks could reduce corridor PMz.s by ~20%. The findings reveal the main determinants of urban
emission hotspots along the two principal arterial roads of mid-sized cities such as Arar. The insights from this
study can support decision-makers in formulating medium- and long-term urban mitigation strategies to address
the increasing roadside exposure in rapidly urbanizing Middle Eastern cities.

Keywords: traffic-related emissions, traffic counts, heavy-duty vehicles, adjusted emission factors, signalized in-
tersection, Arar, Saudi Arabia.

the Paris Agreement, traditional emission inven-
tories often rely on outdated or aggregated traf-
fic data, such as annual vehicle kilometers trav-

INTRODUCTION

Urbanization has catalyzed unprecedented

growth in vehicular traffic, positioning the trans-
portation sector as a leading contributor to global
air pollution and climate change. Urban roads
are the vector for pollutants spreading, including
aerosols (Piotrowicz and Polednik, 2019). Vehi-
cles account for 20-30% of urban nitrogen oxide
(NOx) emissions (vizen, 2025) and 15% of global
CO: emissions (US EPA, 2016), exacerbating re-
spiratory illnesses, acid rain, and global warming.
While cities strive to meet air quality standards
set by the World Health Organization (WHO) and
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eled (VKT) or static fleet composition estimates.
These methods lack the granularity to capture
real-world driving patterns, such as stop-and-go
traffic, speed fluctuations, and the growing prev-
alence of electric and hybrid vehicles. Conse-
quently, policymakers face significant uncertainty
in designing targeted interventions, from conges-
tion pricing to low-emission zones.

This study addresses a critical research gap:
the need for high-resolution, real-world traffic data
to refine emission models and quantify the efficacy
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of traffic management strategies. While automat-
ed traffic monitoring systems like MetroCount’s
RoadPod (Mararo et al., 2015; Segarra-Morales
and Moreno, 2024),TIRTL sensors (Li et al., 2010)
and Lidar and CCTV technologies (Ansariyar et
al., 2024; Guan et al., 2023; Peppa et al., 2021)
have revolutionized data collection, their integra-
tion with emission modeling frameworks remains
underexplored. This paper proposes a novel frame-
work to estimate emissions using MetroCount’s
vehicle classification, speed profiles, and axle-
weight data, validated against established models
like COPERT and MOVES. By correlating traffic
dynamics with pollutant outputs, the study demon-
strates how data-driven strategies, such as signal
optimization and freight route management, can
reduce emissions by up to 25% in urban corridors.
The findings aim to empower cities to align traffic
management with sustainability goals, offering a
blueprint for cleaner, smarter mobility.

The evolution of traffic monitoring has tran-
sitioned from labor-intensive manual counts to
automated systems capable of capturing high-
resolution data. Early methods relied on human
observers tallying vehicles at intersections, a pro-
cess prone to human error and limited to short-
term studies. The advent of inductive loop detec-
tors in the 1960s enabled continuous counting but
lacked vehicle classification capabilities. Modern
systems, such as MetroCount’s pneumatic tubes
and Weigh-in-Motion (WIM) sensors (Adresi et
al., 2024), classify vehicles by axle spacing and
weight, while Al-powered cameras extract speed
and acceleration data with high accuracy (Fathima
et al., 2025; Gautam et al., 2025; N et al., 2023).
For instance, a recent investigation (Segarra-Mo-
rales and Moreno, 2024) compared Bushnell radar
gun and MetroCount MC5600 pneumatic counter
measurements on an Ecuadorian rural road, finding
radar gun readings averaged 48.127 km/h versus
43.579 km/h for the pneumatic counter, with opti-
mal radar positioning determined at 80 meters dis-
tance after cosine effect corrections for the 3.5 m
perpendicular offset. Similarly, LIDAR-equipped
drones now supplement ground sensors in com-
plex urban networks, offering 3D traffic flow visu-
alization (Cherif et al., 2023; Gurung, 2025).

Vehicle emission estimation and prediction
are inherently complex. However, models and
techniques were extensively used and adapted for
context-specific circumstances. Some emission
models translate traffic data into pollutant outputs
using factors derived from laboratory testing or

on-road measurements. For instance, (Wei et al.,
2021) investigated traffic pollution in Hong Kong
using bus-mounted mobile sensors, revealing
that NO and NO2 were predominantly from local
sources (72—84% and 58—71% respectively) while
PM2.5 and CO were mainly from background
sources (55-65% and 73-79%), with highest pol-
lutant concentrations clustering around tunnel
entrances and congested areas, suggesting limi-
tations in existing Low Emission Zone policies
that focus solely on large buses. Other emission
models are regulatory by nature. For instance, the
COPERT model (COmputer Programme to cal-
culate Emissions from Road Transport), widely
adopted in Europe, estimates emissions based
on vehicle categories, fuel types, and speed pro-
files In contrast, the U.S. Environmental Protec-
tion Agency’s MOVES (Motor Vehicle Emission
Simulator) incorporates localized traffic and me-
teorological data, while the IVE model (Interna-
tional Vehicle Emissions) focuses on developing
countries with heterogeneous fleets (Kawsar et
al., 2024; Saberiyansani et al., 2025; Xu et al.,
2021). The COPERT, IV and MOVES models
stem their successful implementation from their
simplicity, scalability, and suitability for data-
scarce regions. An alternative to above modeling
tools, PEMS (Portable Emission Measurement
System) and laboratory-based measurement sys-
tems provide real-world, on-road emission mea-
surements (Giechaskiel et al., 2021; Matsuoka et
al., 2025; Rymaniak et al., 2023). While PEMS
delivers high-accuracy, vehicle-specific data ideal
for validation and real-world compliance testing,
its high cost and limited sample size contrast with
MOVES and COPERT’s ability to generate fleet-
wide emission inventories and future scenarios,
though these models rely on assumptions and av-
erage data that may not fully capture local driving
conditions or vehicle-specific variations.

These latter models are widely used in urban
planning and policy-making due to their reli-
ance on readily available input data, such as traf-
fic volume, vehicle classification, and average
speeds, making them ideal for mid-sized cities
like Arar, where detailed on-road emission mea-
surements or advanced monitoring infrastructure
may be limited. Emission factors, a cornerstone
of these models, need to be calibrated using peer-
reviewed studies in similar contexts to reflect
local driving conditions and vehicle fleets. For
instance, higher nitrogen oxide (NOx) emission
factors were assigned to diesel trucks, reflecting
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their disproportionate contribution to NOy pollu-
tion, while carbon monoxide (CO) spikes during
idling are proved to occur at the signalized inter-
sections. The calculation framework followed a
standard gross emission formula: Emission (g/
km) = Traffic Volume x Emission Factor x Av-
erage Speed Adjustment, where traffic volumes
from automated count systems like Metrocount
and camera-based systems were multiplied by
pollutant-specific emission factors (differentiated
by vehicle type) and adjusted for average speeds
derived from observed driving patterns (e.g.,
stop-and-go delays).

The aim of the current study is to provide a case
study of car emission estimation for a mid-size city
experiencing rapid urban growth. Similar studies
for Saudi cities, whichever medium or large, are up
the author’s best knowledge scarce or non-not yet
conducted. The analysis focused on four key pol-
lutants: carbon dioxide (CO-), a major greenhouse
gas; CO, indicative of incomplete combustion;
NOy, linked to respiratory illnesses; and particu-
late matter (PM), a critical pollutant affecting air
quality and public health. By integrating localized
data with established modeling frameworks, this
approach balances computational efficiency with
contextual accuracy, providing actionable insights
for urban areas facing rapid traffic growth and lim-
ited emission monitoring capabilities.

For instance, this study examines vehicular
emissions along a major arterial road in Arar,
Saudi Arabia, where rapid urbanization and in-
creasing vehicle usage have raised air quality
concerns. The research primarily investigates the
performance of gross emission estimation models
for vehicular emissions, focusing on quantifying
CO:, CO, NOy, and PM2.5 emissions at two stra-
tegic survey points: an entry point and a signal-
ized intersection. The study’s objectives include
comparing the results with standard guidelines
and analyzing the impacts of traffic volume. It
also acknowledges limitations related to the gross
estimation approach and data availability, partic-
ularly within the rapidly developing urban con-
text of the study area

MATERIALS AND METHODS

Study area

Arar, a rapidly expanding urban center in
northern Saudi Arabia, serves as the capital of
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the Northern Border Region and plays a pivotal
role in regional trade and transportation due to its
proximity to the Saudi-Iraqi border. With a cur-
rent population of 219,079 and a projected annual
growth rate of 1.7%, the city is expected to sur-
pass 283,300 residents by 2030, driven by eco-
nomic diversification and infrastructure develop-
ment under Saudi Vision 2030. This growth has
intensified urban sprawl, resulting in a distinct
spatial divide: densely populated southern zones
(150-200 people/km?), characterized by mixed-
use residential, commercial, and administrative
hubs, and sparsely populated newly created and
peripheral areas (0-30 people/km?), dominated
by newly developed estates and undeveloped
land. This demographic and spatial duality shapes
traffic patterns, with the city’s road network - par-
ticularly King Abdulaziz Road - acting as a criti-
cal artery to accommodate both local commuter
traffic and transnational freight. Stretching 3.7
km from south to north, King Abdulaziz Road
connects Arar’s historic downtown core to the
Saudi-Iraq Highway (No. 80), a vital corridor for
trade and cross-border movement and Highway
85 running from Saudi eastern region to Jordan
border towards the West. The road’s dual function
as a commuter and freight corridor generates high
daily traffic volumes, exacerbated by daily and
seasonal peaks during holidays and trade cycles,
while its aging infrastructure struggles to meet
the demands of a growing vehicle fleet (Figure 1).

To analyze vehicular emissions under con-
trasting traffic regimes, two strategic monitor-
ing points were selected along this corridor. The
first is Point A, located at the southern entry point
(30°58°09.4”N 41°00°55.1”E). It represents free-
flow traffic conditions, where vehicles transition
into the road at steady speeds with minimal in-
terruptions, offering insights into baseline emis-
sions during acceleration and cruising phases.
The second survey Point B is a signalized inter-
section at the northern terminus (30°59°05.5”N
41°01°18.3”E). Point B experiences intermittent
congestion due to merging traffic from secondary
arterials, commercial zone access, and frequent
stops at traffic signals, creating stop-and-go dy-
namics that amplify idling-related emissions. The
selection of these points enables a granular com-
parison of emission profiles influenced by traffic
behavior, steady-state driving versus stop-start
conditions, while highlighting the impact of in-
frastructure design and traffic management on ur-
ban air quality. Furthermore, the study’s findings
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Figure 1. Study Area: location of the arterial King Abdulaziz Road and street view photo at peak evening hour
using aerial satellite photos (© Google Maps)

hold relevance for mid-sized cities across the Gulf
Cooperation Council (GCC) region facing similar
challenges of rapid urbanization, traffic growth,
and the need to align mobility policies with sus-
tainability targets outlined in national agendas
like Saudi Vision 2030 (Figure 2).

Data collection procedure

The data collection for traffic volume counts
was conducted using a combination of automated
sensors and observational tools tailored to the

distinct traffic dynamics at the two monitoring
points. At Point A (free-flow entry), Metrocount
RoadPod 4 piezoelectric sensors were deployed
to capture vehicle counts, speeds, and basic axle-
based classification over a 72-hour period from
Sunday, December22,2024, 11:00 AM to Wednes-
day, December 25, 2024, 11:00 AM. In contrast,
Point B (signalized intersection) utilized a hybrid
system integrating Metrocount sensors with cam-
era-based systems (e.g., video analytics) to enable
detailed vehicle classification (cars, trucks, buses,
motorcycles) and real-time observation of traffic
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Figure 2. Locations of the traffic count points A (30°58°09.4”N 41°00°55.1”E)
and B (30°59°05.5”N 41°01°18.3”E) using aerial satellite photos (© Google Maps)
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behavior, such as idling duration and acceleration/
deceleration patterns, over a longer 96-hour span
from Wednesday, December 25, 2024, 11:00 AM
to Sunday, December 29, 2024, 11:00 AM. Both
datasets were structured into 15-minute temporal
bins, aggregated into hourly intervals as per the
“Weekly Vehicle Counts Report,” and designed to
capture variations across peak hours (7:00-9:00
AM, 5:00-7:00 PM), off-peak hours (12:00-3:00
PM, 10:00 PM-5:00 AM), and weekday/week-
end cycles. Parameters included vehicle counts,
classification, speed, and, for Point B, behavioral
metrics critical for emission modeling under stop-
and-go conditions. Data cleaning involved auto-
mated outlier removal (e.g., implausible speeds),
calibration standardization between sensor types,
and cross-validation of camera-based classifica-
tions against Metrocount axle data to ensure ac-
curacy. Missing data gaps (<30 minutes) were
filled via linear interpolation, while longer gaps
were excluded. This multi-layered approach en-
sured high-resolution, context-specific insights
into traffic dynamics, enabling robust emission
estimation for contrasting flow regimes while ad-
dressing potential biases in sensor reliability and
classification errors (Figure 3).

Vehicle emission estimation models

To estimate vehicular emissions along King
Abdulaziz Road in Arar, this study employed
gross emission models such as COPERT IV and
MOVES, selected for their simplicity, scalabil-
ity, and suitability for data-scarce regions. These
models are widely used in urban planning and
policy-making due to their reliance on readily
available input data, such as traffic volume, ve-
hicle classification, and average speeds, making
them ideal for mid-sized cities like Arar, where
detailed on-road emission measurements or ad-
vanced monitoring infrastructure may be lim-
ited. Emission factors, a cornerstone of these
models, were adapted from peer-reviewed stud-
ies in similar Middle Eastern contexts to reflect
local driving conditions and vehicle fleets. For
instance, higher NOy emission factors were as-
signed to diesel trucks, reflecting their dispro-
portionate contribution to NOx pollution, while
CO spikes during idling at the signalized inter-
section (Point B) were explicitly accounted for.
The calculation framework followed a standard
gross emission formula:
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Emission (%) = Traffic Volume X (1)

X Emission Factor X Average Speed Adjustment

Where traffic volumes from Metrocount and
camera-based systems were multiplied by pol-
lutant-specific emission factors (differentiated by
vehicle type) and adjusted for average speeds de-
rived from observed driving patterns (e.g., stop-
and-go delays at Point B). The analysis focused
on four key pollutants: CO:, a major greenhouse
gas; CO, indicative of incomplete combustion;
NOsx, linked to respiratory illnesses; and particu-
late matter (PM), a critical pollutant affecting air
quality and public health. By integrating localized
data with established modeling frameworks, this
approach balances computational efficiency with
contextual accuracy, providing actionable in-
sights for urban areas facing rapid traffic growth
and limited emission monitoring capabilities.

RESULTS AND DISCUSSION

Traffic volume

The two traffic count points (A and B) were
strategically placed on the same arterial road to
ensure full weekday coverage. Indeed, Point A
covered Sunday to Wednesday. While Point B
(located in Arar’s core commercial area) spanned
Wednesday to Sunday, capturing both weekdays
and weekend days (Friday-Saturday in Saudi Ara-
bia). This design ensures a representative sample
of traffic patterns throughout the entire week and
is suitable for a pilot study that will inform wider
scope investigation (Figure 4).

The traffic volume data from Point A (free-
flow entry) on King Abdulaziz Road in Arar
reveals pronounced diurnal and weekly traffic
patterns. It directly informs emission estimation
dynamics. Morning rush hours (07:00-09:00)
consistently recorded 539-593 vehicles/hour,
peaking at 611 vehicles/hour on Wednesday
(08:00-09:00), driven by commuter inflows into
Arar’s downtown core. Evening peaks (17:00—
19:00) were even more intense, with 922-996 ve-
hicles/hour, including 996 vehicles/hour on Tues-
day (17:00-18:00), likely exacerbated by freight
movements and post-work travel. These peaks
highlight heightened emission risks from acceler-
ation/deceleration cycles, despite free-flow con-
ditions. Nighttime traffic (00:00-05:00) plum-
meted to 52—78 vehicles/hour, reflecting minimal
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Figure 3. Field technicians deploying a hybrid traffic data collection system: Installation
of MetroCount RoadPod VT4 pneumatic tubes for vehicle classification and counting, complemented
by overhead camera monitoring for comprehensive intersection movement analysis and validation
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Figure 4. Periods of the traffic count showing temporal continuity and patterns similarity

nocturnal activity, while midday volumes (e.g.,
922 vehicles/hour on Monday at 12:00-13:00)
dipped on Tuesday (790 vehicles/hour), possibly
due to reduced commercial activity or unrecorded
disruptions (Figure 5).

Weekday traffic (Monday-Wednesday) main-
tained high daytime volumes (e.g., 8.817-8.997
vehicles/12 hours between 07:00-19:00). Sharp
contrast was identified during weekends: Sunday
saw 246-972 vehicles/hour, such as 246 vehicles/
hour at 10:00—11:00, underscoring reduced eco-
nomic and commuter activity on weekends. An
anomalous Wednesday mid-morning drop (151
vehicles/hour, 10:00-11:00), compared to Mon-
day’s 743 vehicles/hour, suggests a potential sen-
sor error or unrecorded event, though missing
data for Thursday-Saturday limits full weekly
trend validation. Despite gaps, weekday averages
remain robust for modeling, emphasizing com-
muter and freight dominance in emission pro-
files. These findings underscore the necessity of
hour-specific emission factors, as even free-flow
corridors exhibit significant temporal variability,
with peak-hour traffic disproportionately driving

pollution. Targeted mitigation during evening
rush hours and weekday planning could yield
measurable air quality improvements in Arar’s
growing urban core.

The traffic volume data from Point B (signal-
ized intersection) on King Abdulaziz Road in Arar
highlights intense congestion and stop-and-go
dynamics. This results in critical implications for
emission hotspots. Morning rush hours (07:00—
09:00) exhibited 765-854 vehicles/hour, peaking
at 831 vehicles/hour on Sunday (13:00-14:00).
This is driven by commuter inflows and merging
traffic from secondary arterials. Evening peaks
(17:00-19:00) were markedly higher, reaching
972 vehicles/hour on Sunday (18:00-19:00). this
can be explained by vehicles queued at the sig-
nalized intersection created prolonged idling and
acceleration/deceleration cycles. Unlike Point A’s
free-flow patterns, midday traffic at Point B re-
mained elevated (702-972 vehicles/hour. Night-
time volumes (00:00—05:00) dropped sharply
to 516671 vehicles/hour, though still 10-20%
higher than Point A due to residual freight traf-
fic. Weekday vs. weekend comparisons revealed
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Traffic Counts at point A over a 72-hour period from Sunday, December 22, 2024, 11:00 AM

to Wednesday, December 25, 2024, 11:00 AM

mixed trends: Monday-Wednesday saw steady
peaks (e.g., 892-944 vehicles/hour at 20:00—
21:00), while Saturday-Sunday showed 20-30%
reductions during midday but sustained evening
congestion (e.g., 884-965 vehicles/hour at 18:00—
20:00), suggesting persistent freight and internal
activity. Anomalies included a Wednesday mid-
day spike (972 vehicles/hour, 12:00-13:00), pos-
sibly linked to signal timing adjustments, and a
Thursday mid-afternoon dip (677 vehicles/hour,
14:00-15:00), potentially due to temporary road-
works. Missing data for Thursday-Saturday limit
full trend analysis, but the observed patterns
underscore Point B’s role as a critical emission
hotspot. The frequent idling and acceleration/
deceleration cycles amplify CO and PM emis-
sions despite similar weekday traffic volumes to
Point A. These findings emphasize the need for
intersection-specific mitigation strategies, such as
adaptive signal control or low-idling zones, to ad-
dress the disproportionate pollution generated in
stop-and-go conditions (Figure 6).

The traffic and emission dynamics at Point A
(free-flow entry) and Point B (signalized inter-
section) on King Abdulaziz Road in Arar reveal
stark contrasts in urban mobility and pollution
drivers. Point A exhibited moderate, commuter-
dominated traffic with predictable morming (611
vehicles/hour) and evening (996 vehicles/hour)
peaks, dropping sharply on weekends due to re-
duced residential activity. Emissions here were
proportional to traffic volume, with NO, and PM
elevated during acceleration phases but lower CO
spikes due to minimal idling. In contrast, Point
B emerged as a congestion hotspot, with higher
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sustained volumes (peaking at 972 vehicles/hour)
driven by merging freight, industrial traffic, and
signal-induced stop-and-go cycles. Weekend ac-
tivity at Point B declined less (20—30%) than Point
A, underscoring its role in cross-border freight.
Emissions here were disproportionately ampli-
fied: prolonged idling and frequent acceleration/
deceleration cycles led to elevated CO and PM
levels, even with similar weekday traffic volumes.

Traffic composition

Analysis of the traffic composition shows that
both Point A and Point B are predominantly char-
acterized by passenger vehicles (SV), accounting
for approximately 94% of total traffic at each loca-
tion (38,827 out of 41,164 at Point A and 36,511
out of 39,265 at Point B). The second most fre-
quent vehicle type is 2-axle rigid trucks (TB2),
with around 1.570 vehicles at both points. Notable
differences between the points include higher mo-
torcycle (MC) counts at Point B (101 vs 36) and
a greater presence of 3-axle rigid trucks (T3) at
Point B (404 vs 183). Heavy vehicle movements
are also more frequent at Point B, as indicated by
the higher numbers of 6-axle articulated trucks
(ART6: 71 vs 33) and road trains (DRT: 49 vs 5).
This suggests Point B may be more connected to
freight routes while Point A appears to serve pri-
marily urban passenger traffic (Figure 7) (Table 1).

The vehicle classification data from both sur-
vey points reveals a heavily passenger vehicle-
dominated traffic composition. The Class 2 (stan-
dard passenger vehicles) comprises over 93% of all
traffic at both locations. Point A shows 94.3% Class
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Table 1. Traffic composition at both Point A and Point B according to ARX classification for the full survey

periods at point A and point B, Arar city

Point Total MC SV SVT TB2 T3 T4 ART3 | ART4 | ART5 | ART6 BD DRT
PointA | 41,164 36 38,827 | 211 1.576 | 183 57 16 193 25 33 2 5
PointB |39,265| 101 | 36,511 | 238 1.570 | 404 81 23 190 20 71 49

Note: MC — Motorcycle, SV — Passenger Car, SVT — Car with Trailer, TB2 — 2 Axle Rigid Truck,
T3 — 3 Axle Rigid Truck, T4 — 4 Axle Rigid Truck, ART3 — 3 Axle Articulated Truck,
ART4 — 4 Axle Articulated Truck, ARTS5 — 5 Axle Articulated Truck, ART6 — 6 Axle Articulated Truck,

BD — B-Double, DRT — Double/Road Train.
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Figure 7. Distribution of vehicle classifications at Points A and B according to ARX classification system,
showing predominance of Class 2 (passenger vehicles) at both locations

2 vehicles while Point B has 93%. The remaining
distribution primarily consists of Class 4 vehicles
(likely light commercial vehicles) at approximately
3.84% for both points. There are minimal dif-
ferences between the two points. Indeed, Point B
shows slightly higher percentages of Class 5 vehi-
cles (1% vs 0.4%) and marginally higher represen-
tation of heavier vehicle classes. From an emissions
perspective, this distribution suggests that pas-
senger vehicle emission factors will dominate the

overall emission inventory. The small but signifi-
cant presence of commercial and heavier vehicles
(Classes 4—12) should be accounted for as these
vehicles typically have higher per-vehicle emission
rates despite their lower numbers in the fleet.

Speed profiles

The speed distribution data from two moni-
toring points (A and B) shows a classical urban
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traffic pattern with the majority of vehicles op-
erating between 25-40 km/h. A peaking was re-
corded at 30—40 km/h for Point A (approximately
27%) and 25-30 km/h for Point B (about 26%).
Point A demonstrates a slightly higher propor-
tion of faster speeds (3545 km/h) compared to
Point B, while Point B shows higher percentages
in lower speed ranges (10-25 km/h), suggesting
different road or traffic conditions between the
two locations. This speed distribution pattern
has direct implications for vehicle emissions.
Indeed, vehicles typically produce higher emis-
sions during low-speed stop-and-go traffic (below
20 km/h) due to inefficient engine operation and
frequent acceleration/deceleration cycles. The
predominant mid-range speeds (25-40 km/h)
generally represent more optimal operating con-
ditions with lower per-kilometer emissions. This
is though actual emission rates would also depend
on other factors such as road grade, vehicle type,
and driving behavior (Figure 8).

Emission factors

Emission factors in vehicle emission models
are inherently complex due to their dependence
on multiple variables including vehicle character-
istics, driving conditions, meteorological factors,
and fuel properties, making accurate estimation
challenging (Zhong et al., 2024). To address un-
certainties, researchers have employed various
approaches such as Monte Carlo simulations (Lee
and Park, 2024), sensitivity analyses (Chen et al.,
2024), fuzzy logic methods (He et al., 2025), and
probabilistic frameworks that incorporate confi-
dence intervals and error propagation techniques.

30.00%
25.00%
20.00%
15.00%

10.00%

These uncertainty quantification methods help
account for variabilities in input parameters, mea-
surement errors, and model assumptions, though
the complex interactions between factors like en-
gine load, ambient temperature, vehicle mainte-
nance, and driving behavior continue to present
challenges in achieving high prediction accuracy
across different operational scenarios.

Local meteorological conditions were incor-
porated to contextualize emission dispersion and
vehicle performance. The climate features signifi-
cant seasonal temperature variations, from winter
lows of ~5 °C to summer highs of ~41 °C. These
extremes directly influence emissions: colder
temperatures increase cold-start emissions, while
summer heat elevates loads from air conditioning
use. Consequently, the emission adjustments im-
plicitly account for these temperature-dependent
effects. Furthermore, the wind regime is charac-
terized by consistent north/northwesterly flows
with moderate speeds (predominantly 20-30
km/h), which governs the predominant down-
wind dispersion of pollutants. This wind pattern
was considered in interpreting the spatial impact
of emissions but was not used to adjust the emis-
sion factors themselves (Figure 9).

The estimation of vehicle emissions in this
research relies on established emission factors
(EFs) derived from existing literature (Gao et
al., 2022; Perdikopoulos et al., 2025; Sirithian
et al., 2022), COPERT, MOVES regulatory mo-
dels (Liu et al., 2023; Sun et al., 2023; Xu et
al., 2023) and published research work data (Ye
et al., 2025). While these values serve as refer-
ence points for illustrative purposes, they may
not fully capture the unique characteristics of

0.009 = . l I l- - .
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Figure 8. Vehicle speed distribution comparison between Point A and Point B, showing percentage frequency
across speed ranges from 5 to 80 km/h
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Figure 9. (a) Annual temperature regime showing mean daily maximum and minimum temperatures, hot days,
cold nights, and precipitation patterns at the study area. Annual wind regime displaying monthly
wind speed distribution (stacked bars, left) and directional frequency (wind rose, right) at the study area.
(b) Wind speeds categorized in ranges from 5-10 km/h to >50 km/h. Data source: MeteoBlue

Saudi Arabia’s context. Site-specific calibra-
tion studies are essential for medium and large
Saudi cities, considering the region’s distinctive
climatic conditions, fleet composition, emission
regulations, and other local parameters that sig-
nificantly influence emission patterns. Future
research should prioritize comprehensive field
measurements to develop and validate emission
prediction models that accurately reflect Saudi
Arabia’s transportation ecosystem.

The application of emission factors in this
study incorporated adjustments for key regional
characteristics, namely fuel standards, high am-
bient temperatures, and an aged vehicle fleet,
through specific uplift factors. It is critical to
note, however, that these adjustments introduce
a significant layer of uncertainty, as the chosen
uplifts (+15% for passenger cars, +12% for light
commercial veicles, +10% for trucks, and +8%
for buses) are expert estimates based on a quali-
tative synthesis of literature rather than locally
validated coefficients. Consequently, while this
approach provides a necessary first-order ap-
proximation for the Saudi context, the resulting

emission estimates are inherently uncertain. This
primary uncertainty, stemming from the use of
non-localized emission factors, is compounded
by other limitations including the temporal rep-
resentativeness of traffic data, the documented
accuracy margins of the PM..s sensors, and the
use of typical rather than highly resolved meteo-
rological data in dispersion modeling (Table 2).

Emission estimates

The traffic composition analysis reveals a
predominantly passenger car-oriented traffic
flow, with passenger vehicles constituting ap-
proximately 94% (Point A) and 93% (Point B)
of total daily traffic. Light commercial vehicles
form the second largest category at about 4—5%
of total flow, while heavy-duty trucks represent
only 1-2% of traffic volume. The notably low bus
traffic (less than 0.1% at Point A and 0.14% at
Point B) suggests limited public transport service
in the surveyed area. Point A experiences higher
overall traffic volumes with 13,720 vehicles per
day compared to Point B’s 9.818, though Point B
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Table 2. Emission factors used to estimate the vehicle emission estimates from the traffic data at Arar city

Vehicle Category Scenario CO, CO NO«x PM,.5
Passenger Cars Baseline (Publication-Regulations) 170-180 1.10-1.20 0.20-0.25 0.004-0.005
(Class 2) Adjusted - Saudi Arabia 195 1.38 0.29 0.006
Light Commercial Baseline (Publication-Regulations) 210-225 1.50-1.60 0.30-0.35 0.009-0.010
(Class 3-4) Adjusted - Saudi Arabia 235 1.68 0.34 0.011
Heavy-Duty Trucks Baseline (Publication-Regulations) 600-650 3.80-4.00 3.80-4.20 0.045-0.050
(Class 5-8) Adjusted - Saudi Arabia 660 4.20 4.18 0.055

Baseline (Publication-Regulations) 870-920 4.70-5.00 4.60-5.00 0.070-0.080
Buses (Class 9-12) Adjusted - Saudi Arabia 940 5.10 5.00 0.086

shows slightly higher proportions of heavy vehi-

cles and buses, possibly indicating different land

use patterns or route preferences for commercial

traffic. The distribution of the ADT by vehicle

category is obtained and provided (The transla-

tion of aggregated traffic counts (Table 1) to Aver-

age Daily Traffic (ADT) data yields:

e Point A: ADT = Total count / (72/24) = 41,164
/3 =13,721 vehicles/day

e Point B: ADT = Total count / (96/24) = 39,265
/4 =9.816 vehicles/day (Table 3)

The translation of aggregated traffic counts
(Table 1) to average daily traffic (ADT) data yields:
e Point A: ADT = Total count / (72/24) = 41,164

/3 =13,721 vehicles/day
e Point B: ADT = Total count / (96/24) = 39,265
/4 =9.816 vehicles/day

Furthermore, the daily average traffic speeds
are computed using the speed matrix for the sur-
vey point A and B. For illustrative purposes, the
computation details at the signalized intersection
are presented below and summarized in Table 4:
e Passenger Cars (Class 2) = SV only: Weighted

average = 44.1 km/h
e Light Commercial (Class 3—4) = SVT + TB2:

Weighted average = 41.5 km/h
e Heavy-Duty Trucks (Class 5-8) =TB3 + T4 +

ART3 + ART4: Weighted average =29.9 km/h
e Buses (Class 9—12) = ARTS + ART6 + BD +

DRT: Weighted average = 35.9 km/h

The daily average speed data (Table 4) shows
consistently higher speeds at Point A across all
vehicle categories, with the most pronounced
difference observed in heavy-duty trucks (19.7
km/h faster at Point A). Other vehicle categories
show speed differences of 9-11 km/h, suggest-
ing significantly better traffic flow conditions at
Point A compared to Point B.
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In mileage-based vehicle emission estimation
models, the emission factors increase outside an
optimal speed range characteristic of the vehicle
category. To account for speed variability impact
on emissions, Table 4 presents speed correction
factors (SCFs) provided based on the optimal
range of each vehicle category:

e Passenger cars: Optimal range centered around

60 km/h for urban arterials
e Light commercial: Slightly lower optimal

range due to vehicle weight/mechanics
e Heavy trucks/buses: Lower optimal range con-
sidering vehicle dynamics and urban operations

The SCFs show moderate corrections need-
ed at Point A where speeds are close to optimal
ranges. Point B still requires higher corrections,
especially for heavy vehicles, but the factors are
more aligned with real-world vehicle perfor-
mance characteristics.

For the survey point B as an example, the
results yield a typical speed hierarchy: passen-
ger cars operating at the highest speeds (44.1
km/h), followed by light commercial vehicles
(41.5 km/h), buses (35.9 km/h), and heavy-duty
trucks maintaining the lowest average speeds
(29.9 km/h), which better reflects typical urban
traffic patterns and vehicle operational character-
istics. Using a unit traveled distance, Vehicle Ki-
lometers Traveled (VKT) is calculated using the
equation below (Ishak et al., 2022; Mun and Jung,
2025; Park and Park, 2024; Patino-Aroca et al.,
2022) and summarized in Table 5.

VKT = Number of vehicles X )
X Road segment length (km)

To compute the estimates of emissions in-
duced by the traffic at selected count points, the
results are consolidated using the previous results
presented in Table 2, Table 4, Table 5 and Table 6.
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Table 3. Average daily traffic (ADT) Distribution by vehicle category at two major survey points in Arar City,

Saudi Arabia
Vehicle Category Survey Point A Count (24h) Survey Point B Count (24h)
Passenger Cars (Class 2) 12,954 9.153
Light Commercial (Class 3-4) 595 453
Heavy-Duty Trucks (Class 5-8) 168 198
Buses (Class 9-12) 3 14
Total 13,720 9.818

Table 4. Daily average traffic speeds by vehicle category at survey points A and B in Arar City
with speed correction factors (SCFs)

) Daily average speed (km/h) Speed correction factor (SCF)
Vehicle category - - - - -
Point A Point B (A-B) Optimal range Point A Point B
Passenger cars 53.4 441 +9.3 50-70 km/h 1.12 1.25
Light commerecial 51.0 41.5 +9.5 45-65 km/h 1.08 1.20
Heavy-duty trucks 49.6 29.9 +19.7 40-60 km/h 1.01 1.50
Buses 46.5 35.9 +10.6 40-60 km/h 1.08 1.40
Carbon dioxide (CO,) compared to baseline scenarios, reflecting local

CO, emissions demonstrate strong correlation
with traffic volume and vehicle type distribution,
showing distinct patterns at both survey points.
At Point A, passenger cars are the dominant con-
tributors (2.83M g/day/km), reflecting the high
traffic volume (12,954 vehicles) and moderate
speeds (53.4 km/h). Despite lower traffic volumes
at Point B (9.153 passenger cars), the reduced
speeds (44.1 km/h) result in disproportionately
high emissions (2.23M g/day/km). Heavy trucks
show an inverse pattern, with Point B emissions
(196,614 g/day/km) significantly exceeding Point
A (112,277 g/day/km) despite similar vehicle
counts, primarily due to the speed differential
(29.9 vs 49.6 km/h). Saudi Arabian factors con-
sistently yield 15-20% higher CO, emissions

fleet characteristics and operating conditions.

Carbon monoxide (CO)

CO emissions follow patterns similar to CO,
but with more pronounced variations between
vehicle categories and locations. Passenger cars
at Point A emit 20,034 g/day/km compared to
15,789 g/day/km at Point B, representing a small-
er proportional difference than CO,. Heavy vehi-
cles show particularly sensitive CO emission re-
sponses to speed variations, with Point B’s lower
speeds resulting in notably higher emissions per
vehicle. The - scenarios show 20-25% increases
over baseline values, suggesting that local con-
ditions significantly impact incomplete combus-
tion processes that generate CO. The relationship

Table 5. Average daily traffic (ADT) distribution by vehicle category at two major survey points in Arar City,

Saudi Arabia
Survey Point A Survey Point B
Category Average Speed | VKT (Count x Average Speed | VKT (Count x
Count (24h) (km/h) Length) Count (24h) (km/h) Length)
Passenger Cars 12,954 53.4 12,954 9.153 441 9.153
(Class 2)
Light Commercial
(Class 3-4) 595 51.0 595 453 415 453
Heavy-Duty Trucks
(Class 5-8) 168 49.6 168 198 29.9 198
Heavy-Duty Trucks
(Class 5-8) 3 46.5 3 14 35.9 14
Total 13,720 13,720 9.818 9.818
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Table 6. Estimated emissions at survey point A and point B (g/day/km)

Category Scenario Survey Point A Survey Point B

Co, CO NOx PM2.5 Co, CcO NOx PM2.5

Baseline Low 2,466,726 | 15,997 | 2.908 58.2 1,943,516 | 12,604 | 2,291 45.8

Passenger Cars Baseline High 2,611,712 | 17,451 3.635 72.7 2,057,430 | 13,750 | 2,863 57.2
Adjusted SA 2,830,305 | 20,034 | 4.210 87.1 2,232,206 | 15,789 | 3,318 68.6

Baseline Low 134,865 963 193 5.8 114,156 815 163 4.9

Light Commercial | Baseline High 144,498 1.027 225 6.4 122,310 869 190 5.4

Adjusted SA 150,754 1.079 218 71 127,674 914 185 6.0

Baseline Low 101,808 644 644 7.6 178,200 1.128 1,128 134

Heavy Trucks Baseline High 110,292 678 713 8.5 193,050 1.188 1.247 14.9
Adjusted SA 112,277 714 711 9.4 196,614 1.250 1.245 16.4

Baseline Low 2,808 15.2 14.9 0.23 17,052 923 90.2 1.37

Buses Baseline High 2,970 16.1 16.1 0.26 18,032 98.0 98.0 1.57
Adjusted SA 3,052 16.6 16.2 0.28 18,532 100.5 98.4 1.69

between speed and CO emissions appears more
complex than for CO,, particularly in the heavy
vehicle categories.

Nitrogen oxides (NOx)

NOx emissions exhibit the most dramatic
variations among pollutants, particularly for
heavy vehicles. The - scenarios show substantial
increases over baseline values (25-30%), reflect-
ing the sensitivity of NOx formation to local op-
erating conditions. At Point B, heavy truck NOx
emissions (1.245 g/day/km) are significantly
higher than at Point A (711 g/day/km), despite
similar vehicle counts, demonstrating the criti-
cal impact of speed on NOx formation. Passen-
ger car NOx emissions show less dramatic but
still significant variations between points (4.210
vs 3.318 g/day/km), suggesting that light vehicle
NOx emissions are less sensitive to speed varia-
tions than heavy vehicles.

Particulate matter (PM2.5)

PM2.5 emissions show the highest relative
increases in adjusted scenarios compared to base-
line values, particularly for heavy vehicles. The
speed impact is most pronounced in this pollut-
ant, with Point B’s lower speeds resulting in sig-
nificantly higher per-vehicle emissions, especial-
ly for heavy trucks (16.4 vs 9.4 g/day/km). Pas-
senger car PM2.5 emissions demonstrate notable
differences between points (87.1 vs 68.6 g/day/
km). However, the relative impact of speed is less
influencial than for heavy vehicles. The results
suggest that PM2.5 emissions are particularly
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sensitive to both vehicle type and operating con-
ditions, with implications for air quality manage-
ment strategies in urban areas.

CONCLUSIONS

This study quantified traffic-induced emis-
sions at a free-flow corridor (Point A) and a signal-
ized corridor (Point B) in Arar city, Saudi Arabia,
by combining one-week, 1-h traffic counts with
locally-adjusted emission factors. Despite com-
parable daily traffic volumes, the presence of sig-
nal control fundamentally altered the emissions
profile. At Point B, extended idling and repetitive
acceleration/deceleration cycles during the morn-
ing (07:00-09:00) and evening (17:00-19:00)
peaks elevated corridor-average CO and PMaz.s by
65-75% relative to Point A. These findings cor-
roborate earlier micro-scale analyses that identify
queuing as a primary determinant of urban road-
side pollution rather than absolute vehicle counts.

Although passenger cars constituted more
than 93% of the fleet at both sites, a small cohort
of heavy-duty trucks (smaller than 7% by num-
ber) proved responsible for a disproportionate
share of regulated pollutants. At Point B, trucks
contributed 1 245 g/day/km of NOy and 16.4 g/
day/km of PMo..s, values 75% and 74% higher,
respectively, than those observed at the free-
flow site. The effect was amplified by mean truck
speeds of only 29.9 km/h, well below the thresh-
old at which diesel after-treatment systems oper-
ate efficiently. These results confirm that targeted
abatement of the heavy-duty segment can yield
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outsized air-quality benefits, even in passenger-
car-dominated traffic streams.

Application of Saudi-specific uplifts (+15%
for light-duty and +10-12% for heavy-duty ve-
hicles) raised default COPERT/MOVES baseline
CO: emissions by up to 20% and NOx by up to
30%. The magnitude of this adjustment under-
scores the necessity of regional calibration when
transferring emission factors from temperate,
high-income contexts to arid, high-temperature
environments. Nonetheless, the absence of chas-
sis-dynamometer or PEMS validation data for the
local fleet remains a critical source of uncertainty.

From a management perspective, the results
advocate site-specific interventions rather than
city-wide blanket measures. Adaptive signal con-
trol, dynamic peak-hour freight restrictions, and
enforcement of Euro 6/VI standards for trucks
at Point B are expected to reduce corridor-level
PM:.s by ~20% and NOx by ~25% under con-
servative uptake scenarios. Moreover, the high
temporal resolution of the MetroCount data set
facilitates the design of demand-responsive pric-
ing schemes or real-time driver information sys-
tems that smooth peak flows and restore average
speeds above 50 km/h.

The analysis is constrained by three princi-
pal limitations: (i) missing weekend data (Thurs-
day—Saturday) precluded full characterization of
weekly variability; (ii) the emission model did
not explicitly incorporate meteorology, road gra-
dient, or cold-start effects; and (iii) Saudi-specific
adjustment factors were inferred rather than em-
pirically derived. Future work should therefore
extend temporal coverage, integrate loT-based
meteorological and exhaust sensors for online
calibration, and employ dispersion modelling to
link roadside emissions with population exposure.

In summary, the interaction of congestion
dynamics and a minor heavy-duty sub-fleet de-
fines the dominant urban emission hotspots in
Arar. The study demonstrates that granular traf-
fic monitoring, coupled with regionally adapted
emission factors, can generate actionable insights
for near-term air-quality improvement in rapidly
motorizing Middle-Eastern cities.
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