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INTRODUCTION 

Environmental pollution is one of the great-
est problems confronting the entire globe. One of 
the main factors constituting to pollution is the 
processing and release of heavy metals, which 
pose a very serious issue in the environment-
food-health chain (Ali et al., 2019; Spahić et al., 
2018; Tchounwou et al., 2012). Kosovo has too 
experienced major pollution in recent decades. 
Sources of heavy metal pollution originate form 
geological, industrial, agricultural, pharmaceuti-
cal, domestic, environmental, technological and 
atmospheric sources (He et al., 2005). Taking 
into account the large use of medicinal plants 
as therapeutics, it has been considered essential 

to research and evaluate their impact on public 
health (Macnair, 2003) since these plants are 
used as an alternative form of medicine all over 
the world. Therefore, the high presence of heavy 
metals in plants has raised serious concerns for 
human health, requiring systematic monitoring 
(Maharia et al., 2010).

 As emphasized by Gjorgieva et al. (2010), 
medicinal plants should be analyzed to assess the 
concentration of chemical elements, specifically 
heavy metals, both in soil and in plant tissues. 
Therefore, there has been a growing interest in 
these species recently, especially those plants that 
have phytoremediation capacity, such as Achillea 
millefolium, Hypericum perforatum, Plantago 
lanceolata and Urtica dioica (Ahatović et al., 
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ABSTRACT
The Ferronikeli smelter, as one of the most well-known industrial areas in Kosovo, poses a very serious concern 
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determined with ICPE9800 – plasma emission spectrometer, from which it was observed that Ni, and Zn revealed 
high values ​​compared to Pb both in the soil as well as in the roots and leaves of the Achillea millefolium plant. Also, 
the values ​​of biochemical parameters exhibited high values ​​in this area, precisely due to mining activity. Therefore, 
it was recommended that this area and this plant species be systematically monitored, as it is a good indicator of 
the environmental condition.
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2020; Hussain et al., 2011; Nyakudya et al., 2020; 
Ruwali et al., 2013). Although most of these 
plants grow in different environments, the capac-
ity to accumulate heavy metals varies according 
to the species, as well as according to age, veg-
etative organs and soil characteristics (Lajayer et 
al., 2017; Barthwal et al., 2008; Kos et al., 1996). 

Many environmental factors such as extreme 
temperatures, dryness, salinity, toxic metals, ultra-
violet rays, air pollution (Caverzan et al., 2016; 
Choudhury et al., 2013; Molassiotis et al., 2016), 
pesticide use, and pathogenic infections may in-
duce oxidative stress in plants (Pacheco et al., 
2017; Sabir et al., 2015). Toxic metals, by influenc-
ing the formation of reactive oxygen species, can 
lead to reduced plant growth, altered physiology 
and metabolism, as well as impaired plant cell in-
tegrity (SRO). In this context, assessing oxidative 
stress responses in plants such as A. millefolium 
provides critical insights into their physiological 
tolerance to environmental pollutants, especially 
in the areas with strong industrial activity.

Thiol groups are found primarily in cells as 
part of the side chain of the amino acid cysteine, 
the major product of plant sulfur assimilation 
(Pivato et al., 2014). These thiol (SH) groups on 
cysteine ​​protein residues can undergo various 
oxidative modifications by reactive oxygen/ni-
trogen species. Reversible oxidation of cysteine, 
including S-nitrosylation, S-sulfenylation, S-glu-
tathionylation, and disulfide formation, regulate 
numerous biological functions, such as enzymatic 
catalysis, antioxidants, and other signaling path-
ways (Li and Kast, 2017). Protein carbonylation 
represents the oxidation of proteins driven by 
reactive oxygen species, usually referring to the 
process that forms aldehydes and ketones, and is 
widely used as a marker for assessing oxidative 
stress (Suzuki et al., 2010). Protein carbonylation 
is commonly performed to determine the concen-
tration of oxidative stress in the context of cel-
lular damage, aging, and several age-related dis-
orders (Akagawa, 2021; Li et al., 2024; Orgado et 
al., 2023; Wehr and Levine, 2013)

Therefore, the objective of this study was 
threefold: (1) to assess the concentration of heavy 
metals – nickel (Ni), lead (Pb) and zinc (Zn) – 
in the soil samples collected near the Ferronickel 
Smelter in Drenas; (2) to determine the degree of 
metal accumulation in different vegetative parts 
(roots, stems and leaves) of Achillea millefo-
lium; and (3) to investigate the impact of metal 
exposure on oxidative stress levels using specific 

biochemical indicators. By integrating metal ac-
cumulation data with oxidative stress biomark-
ers, the study sought to advance to a better un-
derstanding of environmental pollution and its 
biological consequences, and to validate the use 
of Achillea millefolium as a reliable bioindicator 
species in mining-affected landscapes.

MATERIALS AND METHODS

Study area

The mining complex and smelter of Ferroni-
keli in Drenas represent an important component 
of the industrial economy of Kosovo, including a 
nickel processing plant that is supplied with raw 
materials from the mines of Çikatova and Glavica 
(New Co Ferronikeli. 2025). To evaluate the level 
of pollution in this area, 20 soil samples and 20 
plant samples were collected from four industrial 
areas within the Drenas locality. Similarly, 20 
such samples were taken as comparative samples 
in the Peja locality, serving as control points. 
Oxidative stress was also analyzed through bio-
chemical parameters using sulfhydryl groups and 
protein carbonylation as bioindicators.

Soil and plant sampling

Soil samples were collected with a hand 
probe according to the random method at a depth 
of 0–15 cm. The samples were taken in 4 zones 
of the Drenas locality (Z1–Z4), each sample con-
sisted of an average of 10 subsamples, including 
1–2 kg per zone. The Peja locality served as a ref-
erence point. The samples were then stored for 
drying at ambient temperature for 6–8 weeks, or-
ganic residues were removed and sieved through 
a 2 mm diameter sieve.

The decomposition of soil samples was carried 
out using the aqua regia method (HCl+HNO3, 3:1 
v ̸ v) according to this procedure: 0.3 g of sample 
(soil) was weighed on an analytical balance and 
placed in Teflon tubes in which 6 ml of HCl and 2 
ml of HNO3 were placed, closed well and placed 
in a MARS 6TM microwave for 50 minutes at 200 
°C (Zogaj and Duering, 2015), after digestion the 
samples were cooled, diluted with distilled water 
to 50 ml and stored at 4 °C until reading. a dilu-
tion ratio of 1:20 for the Drenas samples and 1:10 
for the Peja samples. The concentration of met-
als (Ni, Pb, Zn) was determined using a Shimazu 
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ICPE-9800 Plasma Atomic Emission Spectro-
photometer. Achillea millefolium plant samples 
were collected at the same locations where the 
soil samples were taken and placed in 50 cm ny-
lon bags, marked with numbers and coordinates. 
They were then placed for drying in well-venti-
lated rooms, without contact with sunlight, for a 
period of about six weeks. After drying, the veg-
etative organs were separated separately, finely 
ground using blender. Plant extraction was per-
formed in the microwave using 0.5 g of sample 
(root, stem, leaves) weighed with an analytical 
balance, which were placed in Teflon tubes. Then, 
5 ml H₂O, 5 ml HNO₃ and 3 ml H₂O₂ were added 
to each tube. The Teflon tubes were tightly closed 
and placed in a MARS 6™ microwave oven for 
50 minutes at 200 °C (Czarnecki and Düring, 
2014). After completion of the process, the tubes 
were cooled in a desiccator and the contents were 
transferred to 50 ml plastic tubes, where they 
were leveled with distilled water. The samples 
were analyzed on an ICPE 9800 (atomic emission 
plasma spectrometer) from SHIMADZU.

Assessment of biochemical parameters

For biochemical parameter measurements, plant 
material was stored in liquid nitrogen during field 
sample collection, then the samples were stored in 
a refrigerator at -20 °C until oxidative stress param-
eters were analyzed. For the assessment of oxida-
tive stress parameters, only the leaves of the plants: 
Achillea millefolium, collected in Drenas and Peja 
as a control point, were analyzed. Plant extracts 
were measured at wavelengths depending on the 
working protocol in a spectrophotometer (Thermo 
Scientific™ GENESYS 10S UV-Vis).

Thiol (sulfhydryl) group determination

Thiol (sulfhydryl) groups were extracted by 
weighing 0.5 g of sample (fresh leaf) and homog-
enized with 5 ml of 50 mM potassium phosphate 
buffer (pH 7.0), containing 0.1% (v/v) Triton 
X-100 and 1% (w/v) polyvinylpyrrolidone (PVP). 
In turn, for reading in the spectrophotometer, 250 
µl of plant extract, 750 µl of Tris-HCl pH 8.2, 3950 
µl of methanol and 50 µl of DTNB were used, in-
cubated in the dark for 15 minutes, centrifuged 
and read at a wavelength of 415 nm. A blank test 
was also prepared in a test tube, the same compo-
nents were placed, only distilled H2O was placed 
instead of the sample (Sedlak and Lindsay, 1968).

Protein carbonylation analysis

Protein carbonylation was quantified using 
the 2.4 dinitrophenylhydrazine (DNPH) method. 
(Cvjetko et al., 2010; Yanar et al., 2011) 400 µl of 
supernatant (sample) was transfer in a test tube, 
600 µl (10 mmol DNPH dissolved in 2 mol HCl) 
was added, incubated in the dark at room temper-
ature for 1 hour (from time to time it was mixed 
in a vortex), then 500 µl of 10% TCA (cold) was 
added and for 10–15 minutes they were kept at 
-20 °C, centrifuged and washed three times with 
1000 µl of ethanol acetyl-acetate (1:1); finally, 2 
ml of urea dissolved in phosphate buffer pH= 2.4 
was added and read at a wavelength of 370 nm.

Statistical analysis

Statistical analysis was conducted using the 
IBM SPSS statistics program (version 21). The 
mean, standard deviation were calculated, and 
one-way analysis of variance (ANOVA) was 
conducted to evaluate for significant differences 
between sample areas with p-values p<0.05 and 
p<0.01 ​​considered statistically significant.

RESULTS AND DISCUSSION

The high concentration of Ni and Pb in Dre-
nas pose a serious concern for both the environ-
ment and living organisms. Similar findings were 
reported by Zogaj and Düring, (2016) that the 
proximity of the industrial complex is associated 
high concentrations of Ni.

Assessment of soil contamination with nickel, 
lead and zinc in Drenas and Peja

The high concentration of heavy metals (Ni, 
Pb and Zn) in the soil samples at the Drenas and 
Peja localities are summarized in Table 1. In Dre-
nas, a significant p<0.01 difference of Ni was de-
tected at Z2 (1037.5±383.8 mg/kg) compared to Z3 
(49.95±10.15mg/kg) and Z4 (157.6±29.74 mg/kg). 
Also, a p<0.05 difference was observed between 
Z2 (1037.5±383.8 mg/kg) and Z1 (401.1±312.5 
mg/kg), indicating a localized accumulation of 
metals associated with the proximity of the smelt-
er. Lead (Pb) also demonstrated significant dif-
ferences p<0.05 in this locality and between ar-
eas Z4(82.39±40.10 mg/kg) and Z2(23.49±10.47 
mg/kg), while Zn did not show any significant 
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differences between areas of Drenas, the values of 
which ​​ranged from (36.34 to 54.56mg/kg). In gen-
eral, the concentration of heavy metals in Drenas 
followed the order Ni>Zn>Pb, indicating a higher 
concentration of Ni in this industrial area. Peja, as a 
non-industrial or mining area, had a lower level of 
heavy metal concentration. However, the concen-
tration of Zn was p<0.05 in Z4 (126±34.86 mg/kg) 
compared to Z1 (68.41±16.76mg/kg), highlighting 
a possible local source or some geochemical dif-
ference. Regarding the concentration of Ni and Pb, 
no significant difference was observed between the 
areas of the Peja locality, the values ​​of which re-
main close to the permitted limits.

If the two sites are compared, Drenas revealed 
higher concentrations of the heavy metals Ni, Pb 
and Zn compared to the Peja site. These findings 
are also consistent with the previously reported re-
search suggesting that industrial areas, especially 
mining and metallurgical ones, are a source of 
heavy metal pollution (Prathumratana et al., 2020; 
Šajn et al., 2013). Ni in particular exceeds the lim-
its allowed by the Kosovo government, a concern 
that has also been reported by (Buqaj et al., 2023; 
Sahiti et al., 2023).The high concentration of Ni in 
Drenas points to the possible potential for heavy 
metals to enter the food chain as a result of min-
ing activity, while the lower concentration in Peja 
indicates the possibility of heavy metal pollution 
as a result of anthropogenic factors.

Metal accumulation in vegetative organs of 
Achillea millefolium from the Drenas

A comparative analysis of Ni concentra-
tion within the four zones of the Drenas locality 
in the vegetative organs (roots, stems and leaves) 
of the Achillea millefolium plant is summarized 
in Table 2. The result indicate that the root sys-
tem has a higher concentration of Ni (9.87±3.06; 

27.88±16.18; 5.47±1.70; 19.81±8.47 mg/kg) com-
pared to the stem and leaves. Regarding the root 
system, statistically significant (p<0.05) differenc-
es for Ni were detected in zones Z2 (27.88±16.18 
mg/kg) with Z3 (5.47 ±1.70 mg/kg) which has a 
lower value, while, regarding the concentration of 
Ni in the stem and leaves, no statistically (p>0.05) 
significant difference was observed in any of the 
zones. In terms of the concentration of Pb in the 
Drenas in the three vegetative organs of the Achil-
lea millefolium plant, significant differences were 
observed (p<0.05; p<0.01) were observed in the 
root system between zone Z4 (3.13±0.61 mg/kg) 
and zones Z1, Z2 and Z3 (0.52±0.28; 0.28±0.12; 
1.42±0.32 mg/kg). In the context of the stem, no 
Pb values ​​were evidenced in any of the analyzed 
zones (p>0.05). Likewise, in the leaves, the con-
centration of Pb exhibited no statistically signifi-
cant differences between the zones within the Dre-
nas site. Zinc (Zn) in Drenas, revealed a statistically 
significant difference (p<0.05; p<0.01) for the root 
system between Z4 (27.2±6.38 mg/kg) with Z1 
(19.45±1.21 mg/kg) and Z3 (13.66±1.62 mg/kg), 
but also between Z2 (25.79±2.87 mg/kg) and Z3 
(13.66±1.62 mg/kg). Regarding the stem, statisti-
cally significant differences (p<0.05) are observed 
between Z2 and Z3 (16.48±2.10; 10.50±0.52 mg/
kg), but no differences are observed between the 
other zones. While regarding the leaves, the con-
centration of Zn does not show any significant dif-
ference in any of the zones. These findings confirm 
the ability of the root system to accumulate heavy 
metals, specifically Ni and Pb. This has been con-
firmed by previous studies showing that the root 
system possess the capacity to accumulate heavy 
metals due to the soil contaminated with these met-
als (Verma and Dubey, 2003). As for the lack of 
Pb in the stem, it is seen that the mobility of this 
element is limited in this plant tissue. According to 
the World Health Organization (WHO, 2007) the 

Table 1. Concentration of heavy metals (mg/kg) in soil samples from Drenas and Peja regions
Soil Z Ni (mg/kg) Pb (mg/kg) Zn (mg/kg)

Drenas

Z1 401.1±312.5a 44.13±4.45 53.39±14.64

Z2 1037±383.8a,b 23.49±10.47a 49.53±20.25

Z3 49.95±10.15b 44.57±18.66 36.34±13.22

Z4 157.6±29.74b 82.39±40.10a 54.56±38.72

Peja

Z1 48.39±5.08 44.43±17.85 68.41±16.76a

Z2 82.39±31.33 62.13±4.03 87.57±22.08

Z3 48.73±8.37 52.28±17.68 76.86±21.32

Z4 76.30±21.70 73.37±16.04 126.63±34.84a

Note: data are expressed as mean ± standard deviation (SD), a significant value p<0.05; b significant value p<0.01.
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recommended maximum of heavy metals in me-
dicinal plants are: 0.3 mg/kg for Ni, 0.1–0.5 mg/
kg for Pb and 50-100mg/kg for Zn. The concentra-
tions recorded in this study reached high levels of 
these metals which exceed the permitted limits in 
some parts of the plant, especially in the roots, rais-
ing concerns regarding the use of Achillea mille-
folium for medicinal purposes in industrial areas.

Metal accumulation in vegetativ organs of 
Achillea millefolium from the Peja (Control site)

The results present in Table 3 relate to the con-
centration of heavy metals in the Achillea millefo-
lium plant collected in the Peja locality (control). 

Statistically significant differences (p<0.05) re-
garding the amount of Ni were recorded only in 
the roots of this plant, specifically between Z1 
(6.73 ± 2.49 mg/kg) and Z3 (2.66 ± 0.23 mg/kg). 
These results support the previous findings that 
the root system exhibits heavy metal accumula-
tion capabilities due to their direct contact with 
the soil and limited translocation to the aerial parts 
(Bashir et al., 2024; Verma and Dubey, 2003).

In turn, regarding the amount of Ni in the 
stem and leaves, no statistically significant dif-
ference was observed. Regarding the concentra-
tion of Pb in the four zones within the Peja local-
ity, statistically significant differences (p<0.01) 

Table 2. Concentration of heavy metals (mg/kg) in the vegetative organs in Achillea millefolium collected from 
Drenas

Achillea millefolium Z Ni (mg/kg) Pb (mg/kg) Zn (mg/kg)

Root

Z1 9.87±3.06 0.52±0.28b 19.45±1.21a

Z2 27.88±16.18a 0.28±0.12a 25.79±2.87

Z3 5.47±1,70a 1.42±0.32a,b 13.66±1.62b

Z4 19.81±8.47 3.13±0.61b 27.20±6.38a,b

Stem

Z1 3.74±1.31 NM 13.92±2.54

Z2 3.12±2.45 NM 16.48±2.10a

Z3 1.04±0.27 NM 10.50±0.52a

Z4 3.74±1.82 NM 12.91±4.39

Leaf

Z1 14.79±3.65 0.92 ±0.23 31.79±12.48

Z2 13.02±2.90 0.97±0.40 32.11±11.85

Z3 5.23±1.17 1.15±0.17 21.66±1.94

Z4 13.75±6.67 1.22±0.29 42.90±31.13

Note: data are expressed as mean ± standard deviation (SD), NM- not measurable, a- significant value p<0.05; 
b- significant value p<0.01.

Table 3. Concentration of heavy metals (mg/kg) in the vegetative organs in Achillea millefolium collected from Peja
Achillea millefolium Z Ni (mg/kg) Pb (mg/kg) Zn (mg/kg)

Root

Z1 6.73±2.29a 3.31±1.41 22.50±2.49b

Z2 3.87±0.91 2.73±1.46 18.86±5.92b

Z3 2.66±0.23a 1.43±0.34 10.41±0.50b

Z4 4.60±1.62 0.73±0.25 10.58±3.17

Stem

Z1 0.35±0.07 NM 9.53±5.46

Z2 0.41±0.19 NM 11.86±2.58

Z3 0.41±0.20 NM 10.04±1.74

Z4 0.59±0.30 NM 12.24±3.42

Leaf

Z1 1.65±0.97 0.24±0.01b 26.73±3.83a,b

Z2 1.20±0.32 0.46±0.11b 21.12±1.92a

Z3 1.05±0.36 0.04±0.02b 17.08±1.14b

Z4 1.81±0.98 0.15±0.04b 15.63±3.11a,b

Note: data are expressed as mean ± standard deviation (SD), NM- not measurable, (a) significant value p<0.05; 
(b) significant value p<0.01.
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were noted only in the leaves of this plant be-
tween Z2 (0.46 ± 0.11 mg/kg) with Z1, Z3, Z4 
(0.24 ± 0.013 mg/kg; 0.04 ± 0.02 mg/kg; 0.15 
± 0.04 mg/kg). Regarding the stem, no Pb value 
was detected in this vegetative organ. No statis-
tically significant changes were observed in the 
root system, despite the values ​​in the table. From 
the data, statistically significant changes are ob-
served in the concentration of Zn within the areas 
of the Peja locality. The root system presents sig-
nificant differences (p<0.01) between Z1 (22.50 
± 2.49 mg/kg) with Z3 and Z4 (10.41 ± 0.50 mg/
kg; 10.58 ± 3.17 mg/kg), as well as between Z2 
(18.86 ± 5.92 mg/kg) with Z3 and Z4 (10.41 ± 
0.50 mg/kg; 10.58 ± 3.17 mg/kg). 

Regarding the stem of this plant species, no 
statistically significant differences are observed. 
However, in the leaves, statistically significant 
differences (p<0.01) of Zn were evidenced be-
tween Z1 (26.73 ± 3.83 mg/kg) with Z3 and Z4 
(17.08 ± 1.14 mg/kg; 15.63 ± 3.11 mg/kg), as 
well as (p<0.05) between Z2 (21.12 ± 1.92 mg/
kg) with Z1 and Z4 (26.73 ± 3.83 mg/kg; 15.63 ± 
3.11 mg/kg). These findings underscore the high 
concentrations of heavy metals in the roots of the 
Achillea millefolium plant, consistent with the 
previous research showing that the root system 
generally serves as the main source of toxic met-
als due to adsorption on root surfaces and limited 
mobility towards aboveground parts (Lajayer et 
al., 2017; Barthwal et al., 2008). Furthermore 
although nickel plays an essential physiological 
role in plants by being involved in nitrogen me-
tabolism and enzymatic function, high concen-
trations have been shown to inhibit chlorophyll 
biosynthesis, enzymatic activity, and photosyn-
thetic electron transport (Genchi et al., 2020; 
Modarresi et al., 2024; Sreekanth et al., 2013). 
The absorption and mobility of heavy metals in 
plants is influenced by many factors including 
plant type, age, structure, soil pH and bioavail-
ability of metals (Deng et al., 2025).The lowest 
concentrations of Ni and Pb in Peja as a control 
point indicated the possibility of reference in this 

locality, also the impact of anthropogenic factors 
in the industrial area in Drenas showed higher 
levels of heavy metals.

Biochemical markers of oxidative stress in 
Achillea mellefolium

It is known that heavy metals trigger oxida-
tive stress in plants by inducing reactive oxygen 
species (ROS) which can alter the structure and 
function of proteins. This effect can be evaluated 
through biochemical parameters, such as sulf-
hydryl groups (SH) and protein carbonylation 
which have been used to indicate redox balance 
and oxidative damage (Baba and Bhatnagar, 2018; 
Bajra-Brahimaj et al., 2024; Hussain et al., 2024). 
The results in Table 4 report the concentration of 
sulfhydryl groups and protein carbonylation in the 
leaves of Achillea millefolium collected in Drenas 
as an industrial site and in Peja as a non-industrial 
site. The concentration of sulfhydryl groups (SH) 
as an oxidative damage to proteins and potential 
antioxidants exhibited markedly higher values ​​in 
the samples taken in Drenas (41.01±24.99 µmol/
mg proteins) compared to Peja (21.13±0.79 µmol/
mg proteins). The high values ​​of sulfhydryl groups 
may be attributed to mining activities, a fact also 
confirmed by Srivastava and Srivastava (2023).

However, the high standard deviation ob-
served in Drenas implies considerable variabil-
ity in the oxidative response between individual 
samples, perhaps reflecting heterogeneous expo-
sure to pollutants and microenvironmental con-
ditions. In contrast, the lower standard deviation 
in Peja implies more uniform environmental con-
ditions and a stable physiological state among 
plants. Protein carbonylation, which serves as 
a marker of irreversible oxidative damage to 
proteins, revealed comparable mean values ​​in 
both areas (7.55±2.93 µmol/mg) for Drenas and 
(7.27±2.94 µmol/mg) for Peja. This suggests that 
despite the differences and exposure to pollu-
tion, the overall level of protein oxidation does 
not change. Both have similar standard devia-
tions, suggesting a local analysis of the values. 

Table 4. Concentration of sulfhydryl groups (SH) and protein carbonylation in Achillea millefolium leaves from 
Drenas and Peja

Biochemical parameter Drenas (µmol/mg protein) Peja µmol/mg protein)

Sulfhidril grups (SH) 41.01±24.99a 21.13±10.79

Protein carbonylation 7.55±2.93 7.27±2.94

Note: data are expressed as mean ± standard deviation (SD), (a) significant value p<0.05; (b) significant value 
p<0.01.
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These findings may reflect complex interactions 
between metal-induced ROS generation and the 
plant’s antioxidant defenses. While elevated 
concentrations of metals such as Ni and Pb are 
known to promote ROS formation and subse-
quent protein oxidation (El-Amier et al., 2019; 
Fedorova et al., 2014; Salas-Moreno et al., 2019), 
the antioxidant capacity of A. millefolium partic-
ularly its thiol-mediated buffering systems may 
mitigate oxidative injury to some extent, thereby 
maintaining stable protein carbonyl levels even 
in contaminated environments.

CONCLUSIONS 

This study provided important results on 
heavy metal pollution in the industrial area of ​​
Drenas by examining the concentrations of Ni, 
Pb and Zn in both soil and Achillea millefolium 
plant, together with oxidative stress parameters. 
The results clearly demonstrate that the soils in 
Drenas contain high levels of nickel and lead, 
especially in the areas located closer to the fer-
ronickel smelter, while Peja as an area without 
industrial activity exhibited significantly lower 
concentrations of metals, confirming its suitabil-
ity as a control.

Achillea millefolium showed the ability to ab-
sorb and retain heavy metals, especially zinc and 
nickel, with the highest concentrations consis-
tently found in root tissues. Among the sampled 
areas, Z2 showed the highest accumulation of 
nickel in the roots, while Z4 was distinguished by 
high levels of zinc in both roots and leaves. Stem 
tissues generally showed lower levels of metal 
accumulation, suggesting selective mechanisms 
of translocation and partitioning. These patterns 
support the classification of A. millefolium as a 
potential bioaccumulating species capable of re-
flecting localized pollution gradients.

In addition to the metal-absorbing ability, A. 
millefolium exhibited physiological responses to 
environmental stress, as evidenced by changes 
in biochemical parameters. In particular, the in-
creased concentration of thiol groups in the sam-
ples from Drenasi imply an increase in antioxidant 
defense mechanisms in response to heavy metal 
exposure. Protein carbonylation values, which in-
dicate oxidative damage to proteins, were similar 
in both study sites, probably due to the species’ 
natural defense mechanisms that mitigate the ef-
fects of ROS.

The research findings confirm the dual role of 
Achillea millefolium as a bioaccumulator and as a 
sensitive biological indicator of oxidative stress. 
Its ability to accumulate metals in specific organs 
and to respond to oxidative stress underscore its 
value for environmental monitoring. The contin-
ued use of this species in ecological assessments 
is strongly recommended, especially in the areas 
affected by mining and industrial activities, to 
better understand the distribution of pollutants 
and their biological consequences.
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