PL EN
ACIDITY AND SORPTION PROPERTIES OF ZINC-CONTAMINATED SOIL FOLLOWING THE APPLICATION OF NEUTRALISING SUBSTANCES
 
Więcej
Ukryj
1
Department of Environmental Chemistry, University of Warmia and Mazury in Olsztyn, 4 Łódzki Sq., 10-727 Olsztyn, Poland
 
 
Data publikacji: 01-01-2016
 
 
J. Ecol. Eng. 2016; 17(1):63-68
 
SŁOWA KLUCZOWE
STRESZCZENIE
Soil plays the most important role in the cycling of elements in the terrestrial environment. Contamination of soil with heavy metals have effect on all soil organism and plants. For this reason, studies have been carried out to assess the possibility of neutralising the effect of zinc (0, 150, 300, 600 and 1200 mg Zn∙kg-1 of soil) on soil properties by applying neutralising substances (compost, bentonite and zeolite). Soil acidity and sorption properties depended on zinc contamination and on the type of neutralising substances added. In the series without an addition of neutralising substances, increasing zinc soil contamination resulted in a decrease in total exchangeable bases, in cation exchange capacity and in the saturation degree of the degree of base saturation, and an increase in soil hydrolytic acidity. An addition of bentonite to zinc-contaminated soil had the most advantageous effect of all the additions of neutralising substances on the tested soil properties. It resulted in an increase in soil pH, in total exchangeable bases, in cation exchange capacity, in the degree of base saturation and simultaneously decreased soil hydrolytic acidity compared to the series without additions. Adding zeolite and compost to soil had a small and usually insignificant effect on soil acidity and soil sorption properties.
 
REFERENCJE (20)
1.
D’Emilio M., Caggiano R., Macchiato M., Ragosta M., Sabia S. 2012. Soil heavy metal contamination in an industrial area: analysis of the data collected during a decade. Environmental Monitoring and Assessment, 185(7), 5951–5964.
 
2.
Esmaeili A., Moore F., Keshavarzi B., Jaafarzadeh N., Kermani M. 2014. A geochemical survey of heavy metals in agricultural and background soils of the Isfahan industrial zone, Iran. Catena, 121, 88–98.
 
3.
Feng N., Dagan R., Bitton G. 2007. Toxicological approach for assessing the heavy metal binding capacity of soils. Soil Sediment Contamination, 16, 451–458.
 
4.
Fijałkowski K., Kacprzak M., Grobelak A. Placek A. 2012. The influence of selected soil parameters on the mobility of heavy metals in soils. Inżynieria i Ochrona Środowiska, 15(1), 81–92.
 
5.
Gorlach E., Gambuś F. 1991. Desorpcja i fitotoksyczność metali ciężkich zależne od właściwości gleby. Roczniki Gleboznawcze, XLII(3/4), 207–214.
 
6.
Guala S., Vega Flora A., Covelo E. F. 2013. Modeling the plant-soil interaction in presence of heavy metal pollution and acidity variations. Environmental Monitoring and Assessment., 185, 73–80.
 
7.
Lityński T., Jurkowska H., Gorlach E. 1976. Analiza chemiczno-rolnicza. PWN, Warszawa, 129–132.
 
8.
Martinez-Alcala I., Walker D.J, Bernal M.P. 2010. Chemical and biological properties in the rhizosphere of Lupinus albus alter soil heavy metal fractionation. Ecotoxicology and Environmental Safety, 73, 595–602.
 
9.
Massas I., Kalivas D., Ehaliotis C., Gasparatos D. 2013. Total and available heavy metal concentrations in soils of the Thriassio plain (Greece) and assessment of soil pollution indexes. Environmental Monitoring and Assessment, 185(8), 6751–6766.
 
10.
Modrzewska B., Wyszkowski M. 2014. Trace metals content in soils along the State Road 51 (northeastern Poland). Environmental Monitoring and Assessment, 186(4), 2589–2597.
 
11.
Ociepa E. 2011. Wpływ nawożenia na zmianę rozpuszczalności cynku i niklu w glebie oraz pobieranie tych metali przez kukurydzę i ślazowiec pensylwański. Inżynieria i Ochrona Środowiska, 14(1), 41–48.
 
12.
Page V., Weisskopf L., Feler U. 2006. Heavy metals in white lupin: uptake, root-to-shoot transfer and redistribution within the plant. New Phytologist, 171, 329–341.
 
13.
Sady W., Smoleń S. 2004. Wpływ czynników glebowo-nawozowych na akumulację metali ciężkich w roślinach. X Ogólnopolskie Sympozjum Naukowe „Efektywność stosowania nawozów w uprawach ogrodniczych”, 269–277.
 
14.
Shaheen S. M., Rinklebe J. 2014. Geochemical fractions of chromium, copper, and zinc and their vertical distribution in floodplain soil profiles along the Central Elbe River, Germany. Geoderma, 228-229, 142–159.
 
15.
StatSoft, Inc. 2014. STATISTICA data analysis software system, version 12. www.statsoft.com.
 
16.
Takáč P., Szabová T., Kozáková Ľ., Benková M. 2009. Heavy metals and their bioavailability from soils in the long-term polluted Central Spiš region of SR. Plant Soil and Environment, 55(4), 167–172.
 
17.
Wyszkowski M., Sivitskaya V. 2015. Effect of different substances on some properties of soil contaminated with heating oil. Journal of Ecological Engineering, 16(1), 62–66.
 
18.
Wyszkowski M., Wyszkowska J. 2009. The effect of contamination with cadmium on spring barley (Hordeum vulgare L.) and its relationship with the enzymatic activity of soil. Fresenius Environmental Bulletin, 18(7), 1046–1053.
 
19.
Wyszkowski M., Ziółkowska A. 2011. Effect of compost, bentonite and CaO on some properties of soil contaminated with petrol and diesel oil. Ecological Chemistry and Engineering, A, 18 (9-10), 1373–1381.
 
20.
Wyszkowski M., Ziółkowska A. 2013. Compost, bentonite and calcium oxide used for alleviation of the impact of petroleum products on some soil properties. Polish Journal of Natural Sciences, 28(3), 327–337.
 
Journals System - logo
Scroll to top