ASSESSMENT OF THE BLACK SEA ECOSYSTEM POLLUTION WITH COPPER AND CADMIUM IN SELECTED BAYS OF SEVASTOPOL REGION
 
More details
Hide details
1
Department of Agricultural and Environmental Chemistry, University of Agriculture, A. Mickiewicza Ave. 21, 31-120 Kraków, Poland
2
Institute of Biology of the Southern Seas of Ukrainian National Academy of Sciences, Sevastopol, Ukraine
Publish date: 2015-11-03
 
J. Ecol. Eng. 2015; 16(5):119–127
KEYWORDS
ABSTRACT
A high level of anthropopressure has been registered in Sevastopol region, connected with its strategic role as the main city in the region, but also due to Russian Black Sea Fleet stationing there for many years. A significant source of the Black Sea contamination in Sevastopol area is the industry located in this city, municipal waste and agriculture. Implementing measures aimed at protection of the Black Sea and the evolution of their results requires monitoring conducted in the regions with various levels of anthropopressure. The work was aimed at the assessment of copper and cadmium content in water and algae in selected bays of the Black Sea in the vicinity of Sevastopol. Samples of water and algae were collected in August 2012 from eight Sevastopol bays (Galubaja, Kozacha, Kamyshova, Kruhla, Strieletska, Pishchana, Pivdenna and Sevastopolska) and from the open sea in the vicinity of Fiolent. Algae (Cystoseira barbata and Ulva rigida) were collected from the same places. Collected water was preserved on the sampling place and brought to the laboratory where its copper and cadmium concentrations were assessed. Collected algae were rinsed in distilled water, dried, then homogenised and mineralised. Copper and cadmium content were determined in the mineralizates using ASA method with electrothermal atomisation. Cadmium concentration in water ranged from 0.13 to 1.74 µg Cd∙dm-3, and copper from 7.07 to 22.56 µg Cd∙dm-3. Considerable differences in the content of the analysed elements were registered in individual bays. The highest content was assessed in Galubaja and Sevastopolska bays, whereas the lowest one in the water collected in the open sea and in Pivdenna bay. Copper concentrations in the analysed algae fluctuated from 3.375 to 14.96 mg Cu∙kg-1 d.m. No differences were noted in this element content between the algae species. Cadmium content in the algae ranged from 0.133 to 1.133 mg Cd∙kg-1 d.m. Higher accumulation of cadmium was observed in Cystoseira barbata than in Ulva rigida. The value of copper bioaccumulation coefficient (BC) ranged from 181 to 1201, whereas cadmium from 181 to 5256. The contents of the analysed metals, both in biotic and abiotic elements of the studied ecosystems point to anthropogenic enrichment and the results obtained for Sevastopolska, Galubaja and Kozacha bays indicate a hazardous, excessive bioaccumulation of copper and cadmium and to potential threat to the life of aquatic organisms and seafood consumers.
 
REFERENCES (30)
1.
Black Sea synergy – a new regional cooperation initiative. Commision of the European Communities, Brussels. 11-04-2007 Com (2007) 160, 13 pp.
 
2.
Boubonari T., Malea P., Kevrekidis T. 2008. The green seaweed Ulva rigida as a bioindicator of metals (Zn, Zu, Pb and Cd) in a low-salinity coastal environment. Botanica Marina, 51(6), 472–484.
 
3.
Chowdhury M.J., Wood C.M. 2007. Renal function in the freshwater rainbow trout after dietary cadmium acclimation and waterborne cadmium challenge. Comp. Biochem. Physiol. C, 145(3), 321–332. doi:10.1016/j.cbpc.2007.01.004.
 
4.
Richards R.G., Chaloupka M. 2009. Temperature-dependent bioaccumulation of copper in an estuarine oyster. Sci. Total Environ., 407(22), 5901–5906. doi:10.1016/j.scitotenv.2009.07.039.
 
5.
Das S., Khangarot B.S. 2011. Bioaccumulation of copper and toxic effects on feeding, growth, fecundity and development of pond snail Lymnaealuteola L. J. Hazard. Mater., 185(1), 295–305. doi:10.1016/j.jhazmat.2010.09.033.
 
6.
Kahle J., Zauke G-P. 2003. Bioaccumulation of trace metals in the Antarctic amphipod Orchomene plebs: evaluation of toxicokinetic models. Mar. Environ. Res., 55(5, 359–384. doi:10.1016/S0141-1136(02)00288-X.
 
7.
Kabata-Pendias A., Pendias H. 1999. Biogeochemia pierwiastków śladowych. Wyd. PWN, Warszawa, 352 pp.
 
8.
Bandara J.M.R.S., Wijewardena H.V.P., Seneviratne H.M.M.S. 2010. Remediation of cadmium contaminated irrigation and drinking water: A large scale approach. Toxicol. Lett., 198(1): 89–92. doi:10.1016/j.toxlet.2010.04.030.
 
9.
Bjerregaard P., Bjørn L., Nørum U., Pedersen K.L.. 2005. Cadmium in the shore crab Carcinusmaenas: seasonal variation in cadmium content and uptake and elimination of cadmium after administration via food. Aquat. Toxicol., 72(1-2), 5–15. doi:10.1016/j.aquatox.2004.11.018.
 
10.
Boutier B., Chiffoleau J-F., Gonzalez J-L., Lazure P., Auger D., Truquet I. 2000. Influence of the Gironde estuary outputs on cadmium concentrations in the coastal waters: consequences on the Marennes-Oléron bay (France). Oceanol. Acta, 23, 745–757. doi:10.1016/S0399-1784(00)01119-1.
 
11.
Sundseth K., Barova S. 2009. Natura 2000 in the Black Sea Region. Office for Official Publications of the European Communities, Luxembourg, pp. 12.
 
12.
Mamboya F, Lyimo T.J., Landberg T., Björk M. 2009. Influence of combined changes in salinity and copper modulation on growth and copper uptake in the tropical green macroalga Ulva reticulate. Estuar. Coast. Shelf Sci., 84(3), 326–330. doi:10.1016/j.ecss.2009.03.034.
 
13.
Luo M.B., Liu F. 2011. Salinity-induced oxidative stress and regulation of antioxidant defense system in the marine macroalga Ulva prolifera. J. Experimental Marine Biology and Ecology, 409(1–2), 223–228. doi:10.1016/j.jembe.2011.08.023.
 
14.
Gledhill M., Nimmo M., Hill S.J., Brown M.T. 1997. The toxicity of copper(II) species to marine algae, with particular reference to macroalgae. J. Phycol., 33, 2–11, doi:10.1111/j.0022-3646.1997.00002.x.
 
15.
Besada V., Andrade J.M., Schultze F., González J.J. 2009. Heavy metals in edible seaweeds commercialised for human consumption. J. Marine Systems. 75(1–2), 305–313, doi:10.1016/j.jmarsys.2008.10.010.
 
16.
Huerta-Diaz M.A., de León-Chavira F., Lares M.L., Chee-Barragán A., Siqueiros-Valencia A. 2007. Iron, manganese and trace metal concentrations in seaweeds from the central west coast of the Gulf of California. Applied Geochemistry, 22(7): 1380–1392. doi:10.1016/j.apgeochem.2007.03.052.
 
17.
Akcali I., Kucuksezgin F. 2011. A biomonitoring study: Heavy metals in macroalgae from eastern Aegean coastal areas. Mar. Pollut. Bull., 62(3), 637–645, doi:10.1016/j.marpolbul.2010.12.021.
 
18.
Melville F., Pulkownik A. 2007. Investigation of mangrove macroalgae as biomonitors of estuarine metal contamination. Sci. Total Environ. 387(1–3), 301–309, doi:10.1016/j.scitotenv.2007.06.036.
 
19.
Brito G.B., de Souza T.L., Bressy F.C., Moura C.W.N., Korn M.G.A. 2012. Levels and spatial distribution of trace elements in macroalgae species from the Todosos Santos Bay, Bahia, Brazil. Mar. Pollut. Bull., 64(10), 2238–2244, doi:10.1016/j.marpolbul.2012.06.022.
 
20.
Horta-Puga G., Cházaro-Olvera S., Winfield I., Avila-Romero M., Moreno-Ramírez M. 2013. Cadmium, copper and lead in macroalgae from the Veracruz Reef System, Gulf of Mexico: Spatial distribution and rainy season variability. Mar. Pollut. Bull., 68(1–2), 127–133, doi:10.1016/j.marpolbul.2012.12.008.
 
21.
Caliceti M., Argese E., Sfriso A., Pavoni B. 2002. Heavy metal contamination in the seaweeds of the Venice lagoon. Chemosphere, 47(4), 443–454, doi:10.1016/S0045-6535(01)00292-2.
 
22.
Strezov A., Nonova T. 2009. Influence of macroalgal diversity on accumulation of radionuclides and heavy metals in Bulgarian Black Sea ecosystems. J. Environ. Radioactiv., 100(2), 144–150, doi:10.1016/j.jenvrad.2008.09.007.
 
23.
Wallenstein F.M., Couto R.P., Amaral A.S., Wilkinson M., Neto A.I., Rodrigues A.S. 2009. Baseline metal concentrations in marine algae from São Miguel (Azores) under different ecological conditions – Urban proximity and shallow water hydrothermal activity. Mar. Pollut. Bull., 58(3), 438–443, doi:10.1016/j.marpolbul.2008.11.021.
 
24.
Denton G.R.W., Morrison R.J., Bearden B.G., Houk P., Starmer J.A., Wood H.R. 2009. Impact of a coastal dump in a tropical lagoon on trace metal concentrations in surrounding marine biota: A case study from Saipan, Commonwealth of the Northern Mariana Islands (CNMI). Mar. Pollut. Bull., 58(3), 424–431, doi:10.1016/j.marpolbul.2008.11.029.
 
25.
Strategic Action Plan for the Environmental Protection and Rehabilitation of the Black Sea Adopted in Sofia, Bulgaria, 17 April 2009. The Commission on the Protection of the Black Sea Against Pollution.
 
26.
Langmead O., McQuatters-Gollop A., Mee L.D., Friedrich J., Gilbert A.J., Gomoiu M-T., Jackson E.L., Knudsen S., Minicheva G., Todorova V. 2009. Recovery or decline of the Northwestern Black Sea: A societal choice revealed by socio-ecological modeling. Ecol. Modell., 220(21), 2927–2939, doi:10.1016/j.ecolmodel.2008.09.011.
 
27.
Chakraborty S., Bhattacharya T., Singh G., Maity J.P. 2014. Benthic macroalgae as biological indicators of heavy metal pollution in the marine environments: A biomonitoring approach for pollution assessment. Ecotoxicol. Environ. Saf., 100, 61–68, doi:10.1016/j.ecoenv.2013.12.003.
 
28.
Gao X., Chen C-T.A. 2012. Heavy metal pollution status in surface sediments of the coastal Bohai Bay. Water Res., 46(6), 1901–1911, doi:10.1016/j.watres.2012.01.007.
 
29.
Naser H.A. 2013 Assessment and management of heavy metal pollution in the marine environment of the Arabian Gulf: A review. Mar. Pollut. Bull., 72(1), 6–13, doi:10.1016/j.marpolbul.2013.04.030.
 
30.
Rodríguez-Figueroa G.M., Shumilin E., Sánchez-Rodríguez I. 2009. Heavy metal pollution monitoring using the brown seaweed Padinadurvillaei in the coastal zone of the Santa Rosalía mining region, Baja California Peninsula, Mexico. J. Appl. Phycol., 21(1), 19–26, doi:10.1007/s/10811-008-9346-0.