PL EN
ECOLOGICAL AND ECONOMIC EFFICIENCY OF PEAT FAST PYROLYSIS PROJECTS AS AN ALTERNATIVE SOURCE OF RAW ENERGY RESOURCES
 
More details
Hide details
1
National Mineral Resources University (Mining University), Vasilyevsky Island 21 line d.2, Saint-Petersburg, 199106, Russia
 
 
Publication date: 2016-01-01
 
 
J. Ecol. Eng. 2016; 17(1):56-62
 
KEYWORDS
ABSTRACT
The objective of this review is to find ecologically and economically reasonable method of biomass processing to produce electricity and thermal energy. The major causes of the annual increase in the volume of consumed electricity and thermal energy are the current pace of scientific and technological progress, the overcrowding of cities and industrial agglomeration. Traditional energy sources (coal, oil, gas) have a significant negative impact on the environment, which leads to the deterioration of sanitary-hygienic indicators of the human environment. Besides, prices for traditional energy resources are increasing due to the decline of easy produced stocks. The goal of this article is the investigation and evaluation of environmental and economic efficiency of biomass fast pyrolysis methods for as modern energy resources. The result of the review is the choice of biomass fast pyrolysis as the most environmentally reasonable and economically viable local method of producing electricity and thermal energy in Russia. This method is more eco-friendly, compared to other alternative energy sources, for example using peat as solid fuel.
 
REFERENCES (44)
1.
Bächtold J. 2012. Russia Renewable Energy. URL: http://www.s-ge.com/de/filefie... (02.12.2015).
 
2.
Brownsort P. 2009. Biomass pyrolysis processes: review of scope, control and variability. UKBRC Working paper, 5. URL: www.biochar.ac.uk/download.php?id=14 (02.12.2015).
 
3.
Cherepovitsyn A.E., Fedoseev S.V., Teslya A.B., Vyboldina E.Y. 2015. Analysis of production and consumption of rare-earth metals in the EU and the BRICS. Tsvetnye Metally, 5, 5–10. DOI: 10.17580/tsm.2015.05.01.
 
4.
Clarke D., Rieley J. 2012. Strategy for responsible peatland management. Amsterdam. URL: http://www.bordnamona.ie/wp-co... (02.12.2015).
 
5.
Demirel Y. 2012. Energy: production, conversion, storage, conservation, and coupling. Springer. Berlin Heidelberg. 2012. URL: http://www.springer.com/cn/boo... (13.12.2015).
 
6.
Demirta O. Evaluating the best renewable energy technology for sustainable energy plannin. International Journal of Energy Economics and Policy, 3. URL: http://www.econjournals.com/in... (13.12.2015).
 
7.
Eikhout B.A. 2012. Strategy for a bio-based economy. Green European Foundation. Belgium. URL: http://gef.eu/uploads/media/A_..._ a_bio-based_economy.pdf (02.12.2015).
 
8.
Energy Policy of Poland until 2030. Warsaw 10 November 2009. URL: http://www.mg.gov.pl/files/upl... (02.12.2015).
 
9.
Energy Strategy of Russia for the period up to 2030. Institute of Energy Strategy, 2010. URL: http://www.energystrategy.ru/p... (13.12.2015).
 
10.
Russian industrial production. Federal State Statistics Service of Russia. URL: http://www.gks.ru/wps/wcm/conn...# (02.12.2015).
 
11.
Global Oil & Gas Exploration & Production: Market Research Report. 2015. URL: http://www.ibisworld.com/indus... (02.12.2015).
 
12.
Gray R. Biofuels Annual. Russian Federation. RS1543. 7/1/2015. URL: http://gain.fas.usda.gov/Recen... (13.12.2015).
 
13.
Haoxi B., Arthur J., Ragauskas A. 2013. Comparison for the compositions of fast and slow pyrolysis oils by NMR characterization. Bioresource Technology, 8(147C), 577–584. DOI: 10.1016/j.biortech.2013.07.151.
 
14.
Hörnell C. 2001. Thermochemical and catalytic upgrading in a fuel context: peat, biomass and alkenes. Doctoral dissertation, Kungliga Tekniska Högskolan, Stockholm, Sweden, 87 p. URL: http://www.diva-portal.org/sma... (02.12.2015).
 
15.
Industry Social Responsibility Report 2014. Canadian Sphagnum Peat Moss Association. Alberta, Canada, URL: http://tourbehorticole.com/wp-....
 
16.
loads/2015/07/CSPMA_ISR_Report_2014_web_LW.pdf (02.12.2015).
 
17.
Jahirul M., Rasul M., Chowdhury A., Ashwath N. 2012. Biofuels production through biomass pyrolysis – A technological review. Energies, 5, 4952–5001.
 
18.
Jones S., Meyer P., Snowden-Swan L. 2013. Process design and economics for the conversion of lignocellulosic biomass to hydrocarbon fuels. U.S. Department of Energy, Bioenergy Technologies Office. URL: http://www.pnnl.gov/main/publi... (02.12.2015).
 
19.
Kopylov A.E., Zerchaninov I.L. 2012. Gasification of solid fuels: a retrospective review, current situation and prospects of development. Moscow: Infra-Inzhenerija, 504 p.
 
20.
Lazar M., Lengeyelova M., Kurilla P. 2012. Experiment of peat gasification in plazma reactor. The Holistic Approach to Environment, 4. URL: http://www.cpo.hr/ Paper%2032.pdf (09.11.2015).
 
21.
Lédé J. 2013. Biomass fast pyrolysis reactors: a review of a few scientific challenges and of related recommended research topics. Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles, 68(5), 801–814 DOI: http://dx.DOI.org/10.2516/ogst... (02.12.2015).
 
22.
Lehto J., Oasmaa A., Solantausta Y., Kyto M., Chiaramonti D. 2014. Review of fuel oil quality and combustion of fast pyrolysis bio-oils from lignocellulosic biomass. Applied Energy, 116(1), 178–190. DOI: 10.1016/j.apenergy (04.11.2013).
 
23.
Link S., Kask Ü., Paist A, Siirde A., Arvelakis S., Hupa M, Yrjas P., Külaots I. 2013. Reed as a gasification fuel: a comparison with woody fuels. Mires and Peat, 1, 1–12.
 
24.
Reza Asadi Asad Abad M., Moharrampour M., Abdollahian H., Shir Ali M., Mohagheghzadeh F.. 2012. Developing renewable energies in Iran. International Journal of Energy, Information and Communications, 3(2), http://www.sersc.org/journals/....
 
25.
Oasmaa A., Peacocke C. 2010. Properties and fuel use of biomass-derived fast pyrolysis liquids: A guide. Conversion and Resource Evaluation Ltd. VTT Publications. Espoo 2010. URL: http://www.vtt.fi/Documents/P7... (02.12.2015).
 
26.
Renewables Global Status Report REN21, 2014 (Paris: REN21 Secretariat). URL: http://www.ren21.net/Portals/0....
 
27.
Review of Finnish Biomass Gasification Technologies. OPET Report 4. Technical Research Center of Finland. Espoo 2002. URL: http://www.ieatask33.org/app/w... (02.12.2015).
 
28.
RF patent No. 2259385. Kotelnikov V.A., Podzorov A.I. 2004. The method of processing of peat. The Patent of the Russian Federation. URL: http://www.findpatent.ru/paten... (02.12.2015).
 
29.
RF patent No. 2293104. Kotelnikov V.A., Podzorov A.I., Kotelnikov A.V., Zamuraev V.D. 2007. Fast pyrolysis of peat reactor. The Patent of the Russian Federation. URL: http://www.findpatent.ru/paten... (02.12.2015).
 
30.
RF patent No. 2414503. Baybursky V.L., Males G.S., Nightshade V.N. 2011. Installation for producing synthesis gas by pyrolysis of solid carbonaceous raw materials. The Patent of the Russian Federation. URL: http://www.findpatent.ru/paten... (02.12.2015).
 
31.
RF patent No. 2352606. Titov A.N. 2009. Method of processing of organic raw materials by pyrolysis. The Patent of the Russian Federation. URL: http://www.findpatent.ru/paten... (02.12.2015).
 
32.
Rieley J., Silpola J., Warnecke S. Peat. 2013. World Energy Resources 2013 Survey. World Energy Council. URL: https://www.worldenergy.org/wp... (02.12.2015).
 
33.
Ringer M., Putshe V., Scahill J. 2006. Large-scale pyrolysis oil production: a technology assessment and economic analysis. National Renewable Energy Laboratory. Technical NREL/ TP-510-377779, 01.2006.
 
34.
Russia Average Monthly Nominal Wages in Manufacturing. Trading Economics. 2015. URL: http://www.tradingeconomics.co... (02.12.2015).
 
35.
Shtin S.M. 2011. Peat application as fuel for small power. GIAB No. 7. Publisher of MGGU, 82–96.
 
36.
Tax code of Russia with Changes and Additions. 2015. URL: http://base.garant.ru/10900200 /1/#block_11111 (02.12.2015).
 
37.
Timofeeva S.S., Mingaleeva G.R. 2014. Prospect of using peat in regional power engeneering. Izvestiya Tomskogo Polytechnicheskogo Universiteta. Tehnika i Tehnologii v Energetike. Tomsk, Tom 325. No. 4. URL: http://www.lib.tpu.ru/fulltext... (02.12.2015).
 
38.
Tolvanen H., Kokko L., Raiko R. 2013. Fast pyrolysis of coal, peat, and torrefied wood: Mass loss study with a drop tube reactor, particle geometry analysis, and kinetics modeling. Fuel, 111, 148–156. DOI: 10.1016/j.fuel.2013.04.030.
 
39.
Turner G. 2013. Global Renewable Energy Market Outlook 2013. Bloomberg New Energy Finance. 26 April 2013. URL: http://about.bnef.com/content/... (02.12.2015).
 
40.
Uduma K, Arciszewski T. 2010. Sustainable energy development: The key to a stable Nigeria. Sustainability, 2(6), 1558–1570. DOI: 10.3390/su2061558.
 
41.
U.S. Geological Survey. Mineral Commodity Summaries. January 2015. URL: http://minerals.usgs.gov/miner... (02.12.2015).
 
42.
Wiser R., Yang Z., Hand M., Hohmeyer O., Infield D., Jensen P.H., Nikolaev V., O’Malley M., Sinden G., Zervos A. 2011. Wind energy. In: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, Cambridge University Press, United Kingdom and New York, USA.
 
43.
Wlokas H.L., Boyd A., Andolfi M. 2012. Challenges for local community development in private sector-led renewable energy projects in South Africa: An evolving approach. Journal of Energy in Southern Africa, 23(4), 46–51. URL: http://www.erc.uct.ac.za/jesa/... (13.12.2015).
 
44.
Wright M.M., Satrio J.A., Brown R.C., Daugaard D.E., Hsu D.D. 2010. Techno-economic analysis of biomass pyrolysis to transportation fuels. National Renewable Energy Laboratory. Technical NREL/ TP-6A20-46586, November 2010. URL: http://www.nrel.gov/docs/fy11o... (02.12.2015).
 
Journals System - logo
Scroll to top