EFFECT OF WASTE MINERAL ADDITIVES ON FLOW STABILITY OVER TIME IN SELF-COMPACTING CONCRETE MIXES WITH LOW CLINKER CONTENT
 
More details
Hide details
1
Institute of Construction and Geoengineering, Faculty of Land Reclamation and Environmental Engineering, Poznań University of Life Sciences, 94 Piątkowska St., 60-649 Poznań, Poland
Publish date: 2015-09-10
 
J. Ecol. Eng. 2015; 16(4):206–214
KEYWORDS
ABSTRACT
Contemporary solutions in concrete technology are varied, and consist in e.g. the use of new generation concretes, including the most spectacular achievement of the 1990s – self-compacting concrete (SCC) being the subject of continuous research, as well as protection of the environment against excessive anthropogenic pressures, such as carbon dioxide which is a major emission substance from the cement industry. The studies analysed the possibilities for replacing part of the clinker binder (cement CEM I 42.5 R) in self-compacting concrete with three types of waste mineral additives: fly ash, limestone powder, and granite powder. Focus was placed on key technological characteristics of concrete mixes: air content and rheological properties, maximal diameter of slump-flow and changes thereof over time, as well as the mix’s flow time into the 500 mm diameter, determining the flow dynamics. 28-day compressive strength of the concrete was recognised as a secondary property which in self-compacting concretes results from achieving the right range of the mix’s rheological properties. Concretes were produced using gravel-sand aggregate in 3-fraction composition and a high-efficiency superplasticiser. The studies were conducted as a planned experiment in the 3-ingredient mixes plan.
 
REFERENCES (33)
1.
Aitcin P-C. 2000. Cements of yesterday and today. Concrete of tomorrow. Cement and Concrete Research, 30, 1349–1359.
 
2.
Aruntas H.Y., Dayı M., Tekin I., Birgul R., Şimşek O. 2007. Effects of marble powder on the properties of self-compacting concretes. In: Proceedings of Second National Symposium on Chemical Admixtures Use in Structures, Ankara, 161–172.
 
3.
Bromberek Z. 2012. Budownictwo zrównoważone w aspekcie trwałości. In: T. Błaszczyński (Ed.) Trwałość budynków i budowli. Dolnośląskie Wydawnictwo Edukacyjne, Wrocław.
 
4.
Corinaldesi V., Moriconi G. 2008. Environmentally-friendly self-compacting concrete for rehabilitation of concrete structures. In: Proceedings of International Conference on Concrete Construction, London, 403–407.
 
5.
Corinaldesi V., Moroconi G., Naik T. 2010. Characterization of marble powder for its use in mortar and concrete. Construction and Building Materials, 24, 113–117.
 
6.
Damineli B.L., Kemeid F.M., Aguiar P.S., John V.M. 2010. Measuring the eco-efficiency of cement use. Cement and Concrete Composites, 32 (8), 555–562.
 
7.
EN 197-1:2000. Cement, Part 1: Definitions, specifications and conformity criteria.
 
8.
EN 197-2:2000. Cement, Part 2: Conformity evaluation.
 
9.
EN 12620:2002. Aggregates for concrete.
 
10.
EN 12350-7:2009. Testing fresh concrete. Air content. Pressure methods.
 
11.
EN 12350-8:2009. Testing fresh concrete – Part 8: Self-compacting concrete – Slump-flow test.
 
12.
EN 12390-3:2009. Testing hardened concrete – Part 3: Compressive strength of test specimens.
 
13.
EN 450-1:2010. Fly ash for concrete. Definition, specifications and conformity criteria.
 
14.
Felekoğlu B., Tosun K., Baradan B., Altun A., Uyulgan B. 2006. The effect of fly ash limestone fillers on the viscosity and compressive strength of self-compacting repair mortars. Cement and Concrete Research, 36, 1712–1726.
 
15.
Giergiczny Z., Garbacik A., Pużak T., Sokołowski M. 2010. Cementy portlandzkie wieloskładnikowe CEM II/B-M (V-LL) 32,5R i CEM II/B-M (S-V) 32,5 R – właściwości i zastosowanie. Konferencja Dni Betonu, Wisła, 155–163.
 
16.
Grabiec A.M. 2013. Influence of viscosity modifying agent on some rheological properties, segregation resistance and compressive strength of self-compacting agent. Journal of Civil Engineering and Management, 19 (1), 1–8.
 
17.
Grzeszczyk S., Janowska-Renkas E., Skaliński B. 2006. Właściwości reologiczne mieszanek samozagęszczalnych – wpływ wypełniaczy. Cement Wapno Beton, 6, 337–342.
 
18.
Grzeszczyk S., Podkowa P. 2010. Wpływ mączki wapiennej na właściwości samozagęszczających się betonów. Cement Wapno Beton, 6, 340–347.
 
19.
IPPC-5. IPPC Fifth Assessment IPPC Report: Climate Change 2013. www.climatechange2013.org/imag... AR5_ALL_FINAl.pdf (15.04.2014).
 
20.
Kaszyńska M. 2003. Beton samozagęszczalny – rozwój technologii i wyniki badań. Konferencja Dni Betonu, Wisła, 1–16.
 
21.
Kurdowski W. 2010. Chemia cementu i betonu, wyd. Stowarzyszenie Producentów Cementu, Kraków.
 
22.
Liu Laibao, Zhang Yusheng, Zhang Wenhua, Liu Zhiyong, Zhang Lihua. 2013. Investigating the influence of basalt as mineral admixture on hydration and microstructure formation mechanism of cement. Construction and Building Materials, 448, 434–440.
 
23.
Mądrawski J., Kostrzewski W. 2008. Ocena lepkości zapraw za pomocą wiskozymetru. Aparatura Badawcza. Tom XIII, (3), 13–18.
 
24.
Meyer C. 2009.The greening of the concrete industry. Cement and Concrete Composites, 31 (8), 601–605.
 
25.
Nepomuceno M., Oliveira l., Lopes S.M.R. 2012. Methodology for mix design of the mortar phase of self-compacting concrete using different mineral additions in binary blends of powders. Construction and Building Materials, 26 (1), 317–326.
 
26.
Okamura H., Ouchi M. 2003. Self-compacting concrete development. Journal of Advanced Technology 1, 5–15.
 
27.
Samer M. 2013.Towards the implementation of the Green Building concept in agricultural buildings: a literature review. Agricutural Engineering International: CIGR Journal, 15 (2), 25–46.
 
28.
Szwabowski J., Gołaszewski J. 2010. Technologia betonu samozagęszczalnego betonu cementowego, wyd. Stowarzyszenie Producentów Cementu, Kraków.
 
29.
Szwabowski J., Śliwiński J. 2003. Betony samozagęszczalne. Polski Cement, 2, 42–45.
 
30.
Takada K., Pelova G.J., Walraven J.C. Influence of microfillers on proportioning of mortar in self-compacting concrete. In: Proceedings of the First RILEM Int. Symposium on Self-Compacting Concrete, Stockholm, September 1999, 537–548.
 
31.
Voltz J.S. 2012. High-volume fly ash concrete for sustainable construction. Advanced Materials Research, 512–515, 2976–2981.
 
32.
WBCSD 2009. Cement companies reduce climate impacts by slowing CO2 emissions growth.World Business Council for Suistainable Development, Geneve, http://www.wbcsdcement.org/ind... 163&Itemid=171 (02.04.2014).
 
33.
Woyciechowski P. Domieszki modyfikujące lepkość samozagęszczalnych mieszanek betonowych. Konferencja Dni Betonu, Wisła, 2006, 623–633.