FACTORS INFLUENCING COMPOSTING POULTRY WASTE
 
More details
Hide details
1
Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, Mickiewicza Av. 21, 30-120 Kraków, Poland
Publication date: 2015-11-03
 
J. Ecol. Eng. 2015; 16(5):93–100
 
KEYWORDS
ABSTRACT
Organic recycling of waste, taking into account sanitary safety, should be a fundamental method for recovering the nutrients present in the waste for plants and organic matter. It also refers to by-products of animal origin, which are not intended for consumption by humans. In the present research , composting of hydrated poultry slaughterhouse waste with maize straw was carried out. A combination with fodder yeast and post-cellulose lime was also introduced, which modified chemical and physico-chemical properties of the mixtures. The experiment was carried out by recording the biomass temperature for 110 days in 1.2×1.0×0.8 m reactors with perforated bottoms enabling active aeration. The following parameters were taken into consideration in the composted material: carbon, nitrogen, sulfur, respiratory activity, microorganisms, fractions of compost obtained after washing on sieves. Small amounts of fodder yeast favoured the development of microorganisms and caused a sanitary risk in the final product. At the initial stage, the temperature of raw compost in that object was several degrees lower than in the case of the composted mass without yeast addition. The addition of post-cellulose lime at ratios 6.5:1:6.5 (maize straw: poultry slaughterhouse waste: post-cellulose lime) caused a change in the time of microbiological activity, and led to its inhibition in the final process. In comparison to objects with poultry waste, the highest degree of hygienization was found in the compost with post-cellulose lime (with pH close to neutral). By adjusting the ratios of substrates we can influence the microbiological activity, but the amounts of individual substrates should be determined taking into account the quality of the obtained compost.
 
REFERENCES (21)
1.
Al-Falih A.M. 2006. Nitrogen transformation in vitro by some soil yeasts. Saudi Journal of Biological Sciences, 13, 135–140.
 
2.
Al-Falih A.M., Wainwright M. 1995. Nitrification in vitro by a range of filamentous fungi and yeasts. Letters in Applied Microbiology 21, 18–19.
 
3.
Boes J., Alban L., Bagger J., Møgelmose V., Baggesen D.L., Olsen J.E. 2005. Survival of Escherichia coli and Salmonella Typhimurium in slurry applied to clay soil on a Danish swine farm. Prev. Vet. Med., 69, 3–4, 213–228.
 
4.
Botha A. 2011. The importance and ecology of yeasts in soil. Soil Biology & Biochemistry, 43, 1-8. doi:10.1016/j.soilbio.2010.10.001.
 
5.
Brochier V., Gourlan P., Kallassy M., Poitrenaud M., Houot S. 2012. Occurrence of pathogens in soils and plants in a long-term field study regularly amended with different composts and manure. Agr. Ecosyst. Environ., 160, 91–98.
 
6.
Cools D., Merckx R., Vlassak K., Verhaegen J. 2001. Survival of E. coli and Enterococcus spp. derived from pig slurry in soils of different texture. Appl. Soil. Ecol., 17, 1, 53–62.
 
7.
Czekała J., Dach J., Wolna-Maruwka A. 2006. Wykorzystanie bioreaktora do badań modelowych kompostowania osadu ściekowego. Woda-Środowisko-Obszary Wiejskie 6, 2 (18), 29–40.
 
8.
Elving J., Ottoson J.R., Vinnerås B. Albihn A. 2010. Growth potential of faecal bacteria in simulated psychrophilic/mesophilic zones during composting of organic waste. Journal of Applied Microbiology, 108, 1974–1981 (http://onlinelibrary.wiley.com...).
 
9.
Gondek K. 2009. Aspekty nawozowe i środowiskowe przemian i dostępności dla roślin wybranych pierwiastków w warunkach nawożenia różnymi materiałami organicznymi. Zeszyty Naukowe Uniwersytetu Rolniczego im. Hugona Kołłątaja w Krakowie, 452, ser. Rozprawy.
 
10.
Saveyn H., Eder P. 2014. Kryteria end-of-waste dla odpadów biodegradowalnych poddawanych obróbce biologicznej (kompost i fermentat): Propozycje techniczne. Joint Research Center Scintific and Policy Reports, 352, doi: 10.2791/6295.
 
11.
Gondek K., Kopeć M., Mierzwa M., Tabak M., Chmiel M. 2014. Chemical and biological properties of composts produced from organic waste. J. Elem. 19(2), 377–390, doi: 10.5601/jelem.2014.19.2.670.
 
12.
Kopeć M., Gondek K., Orłowska K., Kulpa Z. 2014. Wykorzystanie odpadów z ubojni drobiu do produkcji kompostu. Inżynieria Ekologiczna 37, 143–150, doi: 10.12912/2081139X.25.
 
13.
Liang Z., He Z., Powell C.A., Stoffella P.J. 2011. Survival of Escherichia coli in soil with modified microbial community composition. Soil Biol Biochem, 43, 7, 1591–1599.
 
14.
Oliveira M., Viñas I., Usall J., Anguera M., Abadias M. 2012. Presence and survival of Escherichia coli O157:H7 on lettuce leaves and in soil treated with contaminated compost and irrigation water. Int. J. Food. Microbiol., 156, 2, 133–140.
 
15.
Pepper I.L., Gerba C.G. 2005. Environmental Microbiology. A laboratory manual. 2nd edition. Elsevier AP, Amsterdam, 209.
 
16.
Rozporządzenie (WE) nr 1774/2002 Parlamentu Europejskiego i Rady z dnia 3 października 2002 r. ustanawiające przepisy sanitarne dotyczące produktów ubocznych pochodzenia zwierzęcego nieprzeznaczonych do spożycia przez ludzi. Dz.U. L 273 z 10.10.2002.
 
17.
Schmidt V.C.R., Laurindo J.B. 2010. Characterization of foams obtained from cassava starch, cellulose fibres and dolomitic limestone by a thermopressing process. Braz. Arch. Boil. Technol., 53, 1, 185–192.
 
18.
Topp E., Welsh M., Tien Y-C., Dang A., Lazarovits G., Conn K., Zhu H. 2003. Strain-dependent variability in growth and survival of Escherichia coli in agricultural soil. FEMS Microbiol. Ecol., 44, 3, 303–308.
 
19.
Van Elsas J.D., Semenov A.V., Costa R., Trevors J.T. 2011. Survival of Escherichia coli in the environment: fundamental and public health aspects. ISME J., 5, 173–183.
 
20.
Westholm L.J., Repo E., Sillanpää M. 2014. Filter materials for metal removal from mine drainage – a review. Environ Sci Pollut Res (2014)21, 9109–9128. doi: 10.1007/s11356-014-2903-y.
 
21.
Wolna-Maruwka, A., Czekała, J., Piotrowska-Cyplik, A. 2009. Określanie tempa inaktywacji bakterii chorobotwórczych w osadach ściekowych poddawanych procesowi kompostowania z różnymi dodatkami w bioreaktorze cybernetycznym. Journal of Research and Applications in Agricultural Engineering, 54(1), 73–78.