THE EFFECTS OF ANITRANSPIRANT DI-1-P-MENTHENE ON SOME PHYSIOLOGICAL TRAITS OF STRAWBERRY
 
More details
Hide details
1
Department of Horticulture, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, Słowackiego 17 Str., 71-434 Szczecin, Poland
2
Department of Plant Physiology and Biochemistry, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, Słowackiego 17 Str., 71-434 Szczecin, Poland
Publish date: 2015-09-09
 
J. Ecol. Eng. 2015; 16(4):161–167
KEYWORDS
ABSTRACT
Strawberry is a species sensitive to water shortages, especially during fruit growth and ripening. One method of limiting water loss in plant production involves the use of antitranspirants, which reduce plant transpiration. One method of limiting water loss in plant production involves the use of antitranspirants, which reduce plant transpiration. One of substances used for this purpose is, amongst others, natural terpene polymer - di-1-p-menthene (pinolene). Research on the influence of a pinolene-containing antitranspirant (with the commercial name of Vapor Gard) on gas exchange parameters (intensity of net CO2 assimilation, intensity of transpiration, stomatal conductance for water, substomatal CO2 concentration), the water balance and the content of assimilation pigments (chlorophyll “a”, “b”, total chlorophyll, carotenoids) in the leaves of the cv. ‘Salsa’ strawberry was conducted in the years 2009–2010. The antitranspirant was used once at a concentration of 0.75% before flowering. The measurements were performed four times: before flowering (1st measurement date), when the plants were in full flowering (2nd measurement date), in the middle of the harvest season (3rd measurement date) and after the end of the harvest season (4th measurement date). Foliar application of the Vapor Gard antitranspirant decreases the intensity of strawberry transpiration without changing the CO2 assimilation activity. Plants sprayed with the tested preparation were characterised by a higher relative water content (RWC) in leaves and a higher value of the photosynthetic index of water use efficiency (WUE). The antitranspirant did not influence the content of assimilation pigments in strawberry leaves. The values of the determined physiological features depended on the measurement date (developmental stage) of the tested strawberry cultivar.
 
REFERENCES (19)
1.
Abdel-Fattah G.H. 2013. Response of water-stressed rose of China (Hibiscus rosa-sinensis L.) plant to treatment with calcium carbonate and vapor gard antitranspirants. J. Appl. Sci. Res., 9(6), 3566–3572.
 
2.
Arnon D.J., Allen M.B., Whatley F., 1956. Photosynthesis by isolated chloroplast. Biochim. Biphys. Acta 20, 449–461.
 
3.
Del Amor F.M., Rubio J.S. 2009. Effects of antitranspirant spray and potassium: calcium: magnesium ratio on photosynthesis, nutrient and water uptake, growth, and yield of sweet pepper. Journal of Plant Nutrition, 32, 97–111.
 
4.
Francini A., Lorenzini G., Nali C. 2011. The antitranspirant di-1-p-menthene, a potential chemical protectant of ozone damage to plants. Water Air Soil Pollut. 219, 459–472.
 
5.
Hager A., Mayer-Berthenrath T., 1966. Die Isolierung und quanttaive Bestimung der Carotenoide und Chlorophyll von Blatern, Algen und isolierten Chloroplasten mit Hilfe Dunnschichtchromatographischer Methoden. Planta. Berlin 69, 198–217.
 
6.
Jeżowski S., Głowacka K., Kaczmarek Z. 2009. Wstępna ocena głównych parametrów wymiany gazowej związanych z fotosyntezą w odniesieniu do plonowania traw energetycznych z rodzaju Miscanthus w pierwszym roku uprawy. Acta Agrophysica, 14(1), 73–81.
 
7.
Klamkowski K., Treder W., Tryngiel-Gać A. 2006. The effects of substrate moisture content on water potential, gas exchange rates, growth, and yield in strawberry plants grown under greenhouse conditions. J. Fruit Ornam. Plant Res. 14, 163–171.
 
8.
Klamkowski K., Treder W. 2006. Morphological and physiological responses of strawberry plants to water stress. Agriculturae Conspectus Scientificus 71(4), 159–165.
 
9.
Klamkowski K., Treder W. 2008. Response to drought stress of three strawberry cultivars grown under greenhouse conditions. J. Fruit Ornam. Plant Res. 16, 179–188.
 
10.
Latocha P., Ciechocińska M., Pietkiewicz S., Kalaji M. K. 2009. Preliminary assessment of antitranspirant Vapor Gard influence on Actinidia arguta growing under drought stress conditions. Ann. Warsaw Univ. Life Sc. 30, 149–150.
 
11.
Lichtenthaler H.K., Wellburn A.R., 1983. Determinations of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 11, 591–592.
 
12.
Masoud A.A.B. 2012. Impact of some antitranspirants on yield and fruit quality of hamawy apricot trees grown in sandy soils. Res. J. Agric. & Biol. Sci., 8(2), 78–82,.
 
13.
Moftah A.E., Al-Humaid A.I. 2005a. Effects of kaolin and pinolene film-forming polymers on water relations and photosynthetic rate of tuberose (Polianthes tuberosa L.). J. King Saud Univ., Vol. 18, Agric. Sci., (1), 35–49.
 
14.
Moftah A.E., Al-Humaid A.I. 2005b. Effects of antitranspirants on water relations and photosynthetic rate of cultivated tropical plant (Polianthes tuberosa L.). Pol. J. Ecol. 53(2), 165–175.
 
15.
Ouerghi F., Ben-Hammouda M., Teixeira Da Silva J.A., Albouchi A., Bouzaien G., Aloui S., Cheikh-M’Hamed H., Nasraoui B. 2014. The effects of Vapor Gard on some physiological traits of durum wheat and barley leaves under water stress. Agric. Conspec. Sci. 79(4), 261–267.
 
16.
Song X.W., Wang C., Zhang Q., Li Y. 2011. Postharvest physio-chemical responses of cut rose (Rosa hybrida L.) to antitranspirant and vacuum cooling. Philipp. Agric. Scientist., 94(4), 368–374.
 
17.
Tezara W., Mitchell V., Driscoll S.P., Lawrol D.W. 2002. Effects of water deficit and its interaction with CO2 supply on the biochemistry and physiology of photosynthesis in sunflower. J. Exp.Bot. 375, 1781–1791.
 
18.
Wróbel J., Wróbel M. 2015. Porównanie parametrów aktywności wymiany gazowej oraz plonu trzech odmian wierzby wiciowej (Salix viminalis L.) pochodzących z wieloletniej plantacji. Acta Agrophysica. 22(2), 219–231.
 
19.
Yamasaki S., Dillenburg L.R., 1999. Measurements of leaf relative water content in Araucaria angustifolia. Rev. Bras. Fisiol. Vegetal. 11(2), 69–75.