THE INVESTIGATION OF DENSITY CURRENTS AND RATE OF OUTFLOW FROM A SEPTIC TANK
Maciej Pawlak 1  
,  
Mariusz Skiba 1
,  
Marcin Spychała 1  
,  
Jakub Nieć 1  
 
 
More details
Hide details
1
Department of Hydraulic and Sanitary Engineering, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland
Publish date: 2015-09-09
 
J. Ecol. Eng. 2015; 16(4):103–110
KEYWORDS
ABSTRACT
The aim of the study was to verify the possibility of the existence of preferential flow paths in a septic tank and the effect of using various types of inlet and outlet in this context. Two of the most unfavourable variants of privileged flow paths for different types of inlet and outlet were analysed. The first variant was related to the occurrence of the privileged flow path below the water surface level directly to the outlet and the second variant – to the so-called boiling phenomenon in a septic tank. During the study, the intensity of outflow from the septic tank was measured. The time between successive doses also was measured. These studies were carried out using several inlet and outlet structures combinations. It was observed that by introducing a suitable outlet it is possible to limit and in the case of the particular type of filtering basket – to eliminate the unwanted phenomenon of preferential flow paths after hot water introduction. The phenomenon of boiling in the septic tank may occur due to the introduction of wastewater of higher density containing a higher concentration of the suspension. The effect of cooler water introduction on this phenomenon was not observed. The limitation of the maximum intensity of outflow from the septic tank can be achieved by filtering basket using at the outlet, which increases the flow resistance thanks to the low porosity.
 
REFERENCES (12)
1.
Bounds T.R. 1997. Design and performance of septic tanks. Site Characterization and Design of Onsite Septic Systems ASTM STP 901. M.S. Bedinger, A.I. Johnson, and J.S. Fleming, Eds., American Society for Testing Materials. Philadelphia.
 
2.
Chmielowski K., Wałęga A., Miernik W. 2009. Wpływ temperatury powietrza na temperaturę ścieków w przydomowej oczyszczalni z filtrem piaskowym o przepływie pionowym. Infrastruktura i Ekologia Terenów Wiejskich, 6, 57–65.
 
3.
Cywiński B., Gdula S., Kempa E., Kurbiel J., Płoszański H. 1983. Oczyszczanie ścieków. Oczysz-czanie mechaniczne i chemiczne, Arkady, Warszawa.
 
4.
D’Amato V.A., Bahe A., Bounds T., Comstock B., Konsler T., Liehr S K.., Long S. K., Ratanaphruks K., Rock Ch. A., Sherman K. 2008. Factors affecting the performance of primary treatment in decentralized wastewater systems. Raport WERF 04-DEC-7. Wyd. IWA Pub.
 
5.
GUS. Ochrona środowiska 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014; Warszawa.
 
6.
GUS. Infrastruktura komunalna 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013; Warszawa.
 
7.
Heidrich Z., Stańko G. 2007. Leksykon przydomowych oczyszczalni ścieków. Wyd. Seidel-Przywecki, Warszawa.
 
8.
Leverenz H.L., Tchobanoglous G., Darby J.L. 2010. Evaluation of greenhouse gas emissions from septic systems. Raport WERF DEC1R09. Wyd. IWA Pub.
 
9.
Łomotowski J., Szpindor A. 1999. Nowoczesne sys-temy oczyszczania ścieków. Wyd. Arkady, Warszawa.
 
10.
Matuszewski G. 2009. Zależność pomiędzy temperaturą powietrza a temperaturą ścieków w mechaniczno-biologicznych przydomowych oczysz-czalniach stosowanych w indywidualnych gospodarstwach rolnych. Maszynopis pracy magisterskiej Uniwersytet Przyrodniczy w Poznaniu KIWiS.
 
11.
Patterson R.A. 2003. Temporal variability of septic tank effluent. In: Patterson R.A. and Jones M.J. (Eds.) Future directions for on-site systems: Best management practice. University of New England, Armidale, Published by Lanfax Laboratories Armidale.
 
12.
Viraraghavan T. 1977. Influence of temperature on the performance of septic tank systems. Water, Air and Soil Pollution, 7, 103–110.