Rice Husk Biochar as a Sustainable Adsorbent for Tetracycline Removal from Aqueous Solution by Using Taguchi Design Approach
Więcej
Ukryj
1
Centro de Investigación Medio Ambiente y Desarrollo Sostenible, Facultad de Ingeniería Química e Industrias Alimentarias, Universidad Nacional Pedro Ruiz Gallo, Lambayeque 14013, Perú
2
Centro de Investigación Biodiversidad y Manejo Ecológico del Bosque Seco y Cultivos Agrícolas, Facultad de Ciencias Biológicas, Universidad Nacional Pedro Ruiz Gallo, Lambayeque 14013, Perú
3
Grupo de investigación Biorrefinería, Facultad de Ingeniería Química y Textil, Universidad Nacional de Ingeniería, Lima, Perú
4
Facultad Ingeniería Mecánica y Eléctrica, Universidad Tecnológica del Perú, Chiclayo, Perú
5
Centro de Investigación de Ingeniería de Procesos de Tratamiento de Aguas, Facultad de Ingeniería Química, Universidad Nacional del Callao, Callao, Perú
Autor do korespondencji
Segundo Alberto Vasquez Llanos
Centro de Investigación Medio Ambiente y Desarrollo Sostenible, Facultad de Ingeniería Química e Industrias Alimentarias, Universidad Nacional Pedro Ruiz Gallo, Lambayeque 14013, Perú
J. Ecol. Eng. 2025; 26(9)
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Tetracycline removal was evaluated in an aqueous solution with rice husk biochar using the Taguchi design with signal-to-noise ratio (S/N) under the 'Larger is better' condition. Carbonized biochar samples were prepared at 500, 625, and 750 °C (RHB500, RHB625, and RHB750, respectively) for 1 h. The variables investigated included carbonization temperature, contact time (1, 2.5, and 4 h), and biochar dosage (1, 10, and 20 g/L) at a controlled pH of 3. The results showed that the biochar yield decreased with a nonlinear trend from 39.60% to 29.36%, while the surface area of the BET increased from 12.75 to 231.04 m2/g with increasing carbonization temperature from 500 to 750 °C. The adsorption capacity of rice husk biochar was optimal at 750 °C, a contact time of 4 hours, and a biochar dosage of 20 g/L, achieving a 100 % removal efficiency. Optimized conditions allowed 99.51% removal of pure tetracycline (50 mg/L) and 100% removal in a solution containing tap water and medical grade tetracycline. Kinetic analysis indicated that the adsorption process followed a pseudo-second order model, while the equilibrium data were best described by the Langmuir isotherm, with a maximum adsorption capacity of 6.009 mg/g at 25 °C. This suggests that the interaction between biochar and tetracycline is dominated by monolayer chemical reactions on homogeneous surfaces. These results underscore that RHB750 is an efficient, cost-effective, and easily accessible adsorbent and represents a viable and sustainable solution for the treatment of antibiotic contaminated water